
Simulated Consultative Committee for
Space Data Systems (CCSDS) Telemetry

Generator (SCTGEN)

System User's Guide

September 1997

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

SCTGEN
System User’s Guide

January 199

Prepared by: Quality Assured by:

____________________________________ ____________________________________
Stan Hilinski, ETS Lead Software Engineer J. Klein, Quality Engineer
Integral Systems Inc. Unisys, Inc.

Prepared by: Approved by:

____________________________________ ____________________________________
Khai Dolinh, ETS Software Engineer N. Speciale, Head
Integral Systems Inc. Microelectronic Systems Branch

Code 521, NASA/GSFC

Reviewed by: Edited by:

____________________________________ ____________________________________
Chandru Mirchandani, ETS Project Lead L. Kane, Sr. Technical Writer
Lockheed Martin Space Mission Systems NYMA, Inc.

Goddard Space Flight Center
Greenbelt, Maryland

iii/iv

PREFACE

This document describes the software procedures for running SCTGEN. The user should note that the
core software in SCTGEN is referred to as TIGER. All scripts and script errors in the main menu panel
will refer to “Tiger Script”. Tiger is an ongoing Code 521 in-house development effort.

This document will be under the configuration management of the Microelectronic Systems Branch
Configuration Control Board (CCB). Changes to this document shall be made by Documentation Change
Notice (DCN), reflected in text by change bars, or by complete revision.

Requests for copies of this document, along with questions or proposed changes, should be addressed
to:

Technology Support Office
Goddard Space Flight Center
Greenbelt, Maryland 20771
(301)286-6034

v/vi

CHANGE INFORMATION PAGE
List of Effective Pages

Page Number Issue

Title Original

Signature Page Original

iii through x Original

1-1 through 1-5 Original

2-1 and 2-2 Original

3-1 through 3-104 Original

4-1 through 4-49 Original

5-1 through 5-18 Original

6-1 through 6-8 Original

A-1 and A-2 Original

Document History

Issue Date

Original September 1997

vii

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION..1-1

1.1 Overview ...1-1
1.2 Intended Audience ...1-1
1.3 System Overview...1-1
1.4 Applicable Documents ...1-3
1.5 Document Organization ...1-3
1.6 Terminology...1-4

1.6.1 Definitions ..1-4
1.6.2 Acronyms...1-5

SECTION 2 - INSTALLATION ...2-1

2.1 Introduction ..2-1
2.1.1 Installation Requirements ..2-1
2.1.2 Installation Procedures ..2-1
2.1.3 Directory Contents...2-1

2.1.3.1 SCTGEN Graphical User Interface Release 1.01 ..2-1
2.1.3.2 SCTGEN Software Release 1.0 ..2-2

SECTION 3 - SCTGEN GRAPHICAL USER INTERFACE ...3-1

3.1 Top-Level Menu Descriptions...3-1
3.2 Return Link Data Scenario Development..3-2
3.3 Forward Link Data Scenario Development ... 3-38
3.4 EODS Data Products ... 3-63

3.4.1 Production Data Sets...3-64
3.4.2 Expedited Data Sets..3-65

3.5 EDOS Packet Products ... 3-77
3.6 EDOS Data Units ... 3-78
3.7 Rate-Buffered Product ... 3-92
3.8 SCTGEN Tutorial ... 3-108
3.9 SCTGEN HELP.. 3-109
3.10 SCTGEN CADU Stream Help Screen .. 3-111

SECTION 4 - USER DETAILED REFERENCE DOCUMENTATION ..4-1

4.1 READ_ME ...4-1
4.2 SYNTAX ..4-3
4.3 GLOSSARY...4-4
4.4 MAIN ...4-5
4.5 CADU STREAM...4-6
4.6 CLTU STREAM..4-9
4.7 DEPOT: GENERIC UNIT READER..4-9
4.8 DEVICES... 4-10
4.9 ERRORS ... 4-11
4.10 EVENTS .. 4-13
4.11 FORMATS ... 4-16
4.12 MUX... 4-19
4.13 OUTPUT.. 4-21
4.14 PACKET STREAM... 4-25
4.15 RECORD STREAM.. 4-28
4.16 REGIONS .. 4-29
4.17 STREAM.. 4-33
4.18 TASKS... 4-34
4.19 TELECOMMAND PHYSICAL CHANNEL STREAM.. 4-36

vii

4.20 TELECOMMAND TRANSFER FRAME.. 4-37
4.21 TIME .. 4-38

viii

TABLE OF CONTENTS (CONT’D)
4.22 EDU STREAM ... 4-39
4.23 ESTP PRODUCTS .. 4-41
4.24 PDS AND EDS ... 4-41
4.25 SONY TAPE DEVICE ... 4-47
4.26 SLIP STREAM ... 4-47
4.27 RATE BUFFERED FILE .. 4-48

SECTION 5 - USER DETAILED SCRIPTING TURORIAL..5-1

5.1 TIGER TUTORIAL: SIMPLE SCRIPT ..5-1
5.2 TIGER TUTORIAL: MAKING CADUS ..5-8
5.3 TIGER TUTORIAL: ERRORS .. 5-11
5.4 TIGER TUTORIAL: MUX ... 5-14

APPENDIX A - ERROR LISTING.. A-1

FIGURES
Figure 1-1 ETS System Architectural Overview...1-2
Figure 3-1 SCTGEN Main Menu Panel..3-1
Figure 3-2 Data Scenario Menu Panel...3-2
Figure 3-3 CADU Data Scenario Menu Panel ..3-3
Figure 3-4 Output Definition Menu Panel...3-4
Figure 3-5 Device Definition Menu Panel ..3-5
Figure 3-6 Frame Multiplexer Menu Panel...3-6
Figure 3-7 Frame Definition Menu Panel ...3-7
Figure 3-8 SYNC Definition Menu Panel..3-8
Figure 3-9 Frame Data Definition Menu Panel...3-9
Figure 3-10 Frame DATA Definition Menu Panels ...3-9
Figure 3-11 OCF Definition Menu Panel.. 3-10
Figure 3-12 RS Definition Menu Panel .. 3-11
Figure 3-13 Error Listing Menu Panel .. 3-12
Figure 3-14 Flip Error Definition Menu Panel... 3-13
Figure 3-15 Event Listing Menu Panel... 3-14
Figure 3-16 Event Definition Menu Panels .. 3-15
Figure 3-17 Set Error Definition Menu Panel ... 3-17
Figure 3-18 Packet Multiplexer Menu Panel .. 3-18
Figure 3-19 Packet Definition Menu Panel... 3-19
Figure 3-20 Data Definition Menu Panel.. 3-20
Figure 3-21 Secondary Header Definition Menu Panel .. 3-22
Figure 3-22 Error Listing Menu Panel .. 3-23
Figure 3-23 Flip Error Definition Menu Panel... 3-24
Figure 3-24 Event Listing Menu Panel... 3-25
Figure 3-25 Event Definition Menu Panels .. 3-26
Figure 3-26 Set Error Definition Menu Panel ... 3-28
Figure 3-27a Script Window .. 3-27
Figure 3-27b Commented Script ... 3-28
Figure 3-28 SCTGEN Main Menu Panel.. 3-31
Figure 3-29 Telecommand Data Scenario Menu Panel.. 3-32
Figure 3-30 TC Output Definition Menu Panel ... 3-33
Figure 3-31 Device Definition Menu Panel ... 3-34
Figure 3-32 Command Block Definition Menu Panel ... 3-35
Figure 3-33 Command Block Definition Menu Panel ... 3-36
Figure 3-34 PB5 Region Definition Menu Panel... 3-37

ix

TABLE OF CONTENTS (CONT’D)
Figure 3-35 Event Listing CmdBlk Menu Panel ... 3-38
Figure 3-36 Event Definition Menu Panels .. 3-39
Figure 3-37 Physical Definition Menu Panel .. 3-41
Figure 3-38 CLTU Definition Menu Panel .. 3-42
Figure 3-39 TCTF Definition Menu Panel .. 3-43
Figure 3-40 Packet Identification Menu Panel ... 3-44
Figure 3-41 Packet Definition Menu Panel... 3-44
Figure 3-42 Data Definition Menu Panel.. 3-45
Figure 3-43 Error Listing Menu Panel .. 3-47
Figure 3-44 Flip Error Definition Menu Panel... 3-48
Figure 3-45 Event Listing Menu Panel... 3-49
Figure 3-46 Event Definition Menu Panels .. 3-50
Figure 3-47 Set Error Definition Menu Panels.. 3-51
Figure 3-48a Script Window for the CmdBlk.. 3-52
Figure 3-48b Commented Script for the CmdBlk ... 3-53
Figure 3-49 EDOS Ground Message Header Calculation and Format.. 3-54
Figure 3-50 SCTGEN Main Menu Panel.. 3-69
Figure 3-51 SCTGEN Main Menu Panel.. 3-56
Figure 3-52 EDS Input Window Definition Menu Panel.. 3-57
Figure 3-53 EDS Scenario Definition Menu Panel ... 3-57
Figure 3-54 EDS Stream Definition Menu Panel.. 3-71
Figure 3-55 Output Definition Menu Panel... 3-59
Figure 3-56 Creation Definition Menu Panel .. 3-60
Figure 3-57 SC Time Definition Menu Panel ... 3-61
Figure 3-58 ESH Definition Menu Panel .. 3-62
Figure 3-59 Packet Multiplexer Definition Menu Panel .. 3-63
Figure 3-60 APID 320 Packet Definition Menu Panel... 3-64
Figure 3-61 Event Definition Menu Panel .. 3-65
Figure 3-62 Event Listing Menu Panel... 3-66
Figure 3-63 EDS Script Window.. 3-67
Figure 3-64 EDS Run Window... 3-68
Figure 3-65 SCTGEN GUI Main Menu Panel... 3-69
Figure 3-66 EDOS Packet Product Definition Input Window.. 3-70
Figure 3-67 EDOS Data Units Input Window ... 3-70
Figure 3-68 EDOS Data Units Scenario Definition Menu Panel ... 3-71
Figure 3-69 EDOS Data Units Stream Menu Panel ... 3-72
Figure 3-70 EDOS Data Units Output Definition Menu Panel... 3-73

x

TABLE OF CONTENTS (CONT’D)
Figure 3-71 Packet (EDU) Multiplexer Menu Panel.. 3-74
Figure 3-72 EDU Stream Definition Menu Panel... 3-75
Figure 3-73 EDU PB5 Definition Menu Panel .. 3-76
Figure 3-74 Event Listing Menu Panel... 3-77
Figure 3-75 Packet Definition Menu Panel... 3-78
Figure 3-76 Error Listing Menu Panel .. 3-79
Figure 3-77 Error Definition Menu Panel ... 3-80
Figure 3-78 Event Definition Menu Panel .. 3-81
Figure 3-79a EDOS Data Units Script Window Panel .. 3-82
Figure 3-79b EDOS Data Units Run Window... 3-83
Figure 3-80 RBP Input Window ... 3-84
Figure 3-81 RBP Stream Menu Panel ... 3-85
Figure 3-82 RBP Output Definition Menu Panel... 3-86
Figure 3-83 RBP Creation Definition Menu Panel.. 3-86
Figure 3-84 RBP Stream Definition Menu Panel.. 3-87
Figure 3-85 RBP Stream PB5 Definition Menu Panel .. 3-88
Figure 3-86 Event Listing Menu Panel... 3-89
Figure 3-87 (RSUnc) Event Definition Menu Panel.. 3-90
Figure 3-88 (RSCorr) Event Definition Menu Panel ... 3-91
Figure 3-89 Packet Definition Menu Panel... 3-92
Figure 3-90 Packet Data Definition Menu Panel .. 3-93
Figure 3-91 (Error) Listing Menu Panel.. 3-94
Figure 3-92 (Error) Definition Menu Panel ... 3-95
Figure 3-93 (Error) Event Listing Menu Panel.. 3-96
Figure 3-94 (Error) Event Definition Menu Panel ... 3-97
Figure 3-95 RBP Script Window Panel .. 3-98
Figure 3-96 RBP Run Window... 3-99
Figure 3-97 SCTGEN Main Menu Panel.. 3-100
Figure 3-98 SCTGEN Tutorial Screen ... 3-101
Figure 3-99 SCTGEN Configuration Screen .. 3-101
Figure 3-100 SCTGEN Help Screen.. 3-102
Figure 3-101 SCTGEN SCTGEN CADU Stream Help Screen ... 3-103

1-1

SECTION I
INTRODUCTION

1.1 OVERVIEW

This document provides the procedures to use the Simulated Consultative Committee for Space Data
Systems (CCSDS) Telemetry Generator (SCTGEN). The SCTGEN is being developed primarily as part
of the Earth Observing System Data and Information System (EOSDIS) Test System (ETS) Project.
SCTGEN’s primary function is to generate telemetry data files in various formats according to user
specifications. In conjunction with other ETS components, SCTGEN will be used to support EOS ground
system integration, testing, verification, and validation.

SCTGEN is a software package with a graphical user interface that simulates CCSDS and non-CCSDS
telemetry for both forward and return link data streams. When used as a test tool for the EOSDIS it will
also simulate EOS Data and Operations System (EDOS)-generated data products, such as EDOS Data
Units (EDU), Expedited Data Sets (EDS), and Production Data Sets (PDS). SCTGEN will also provide
comprehensive error insertion capabilities. SCTGEN is an off-line tool used to generate test data, and as
such will not present a schedule conflict with operational systems. However, to generate the required test
data in time for testing, the user community will have to schedule adequate time to compose and
generate the test data suite.

SCTGEN is being developed by Code 521, the Microelectronic Systems Branch (MSB), at Goddard
Space Flight Center (GSFC). In addition to specific ETS simulation functions that are funded by the ETS
Project, SCTGEN will also simulate other commonly used data formats, scenarios, and communication
protocols as a generic data simulation tool. Generic efforts are funded by the MSB. All ETS Project
needs and requirements pertaining to the same are specified in this document.

1.2 INTENDED AUDIENCE

This document is intended for:

a. ETS test and maintenance team who need to use the capabilities to generate scenarios to test
the sub-systems that comprise ETS.

b. EOSDIS Independent Verification and Validation (IV&V) team and the ETS user community, who
require a detailed set of guidelines to use the full capabilities of the system.

1.3 SYSTEM OVERVIEW

SCTGEN will be based on an architecture that provides a modular and flexible environment. This
environment will support current data simulation requirements, and also allow future development of new
data formats and a range of data scenarios. It will run on various UNIX platforms. High reusability is a
basic design goal, with a perspective for both code and data reuse. The user interface will be based on
graphical representation, and will be enhanced with intelligence to alleviate the cumbersome burdens
involved in test data specification.

To support automated test operations, SCTGEN will provide a summary of expected results for each test
data file generated. Expected results will be stored in easily readable formats so that ETS data
verification tools can read them in for comparison with actual test results.

Figure 1-1 illustrates the conceptual ETS system architecture; shaded boxes represent SCTGEN’s role of
in the context of ETS.

1-2

ETS
HIGH-RATE

SYSTEM

LaRC DAAC

GSFC DAAC

EDOS

Operational System ETS Component

ETS
LOW-RATE

SYSTEM

CLTU

CADU

CLTU

PACKET

CLTU

PACKET

Ku-BAND
CADU

S-BAND CADU

CLTU

PACKET

CLTU

LEGEND:

CADU

DATA SETS

GSFC

EOC

SCITF

ETS PORTABLE
S/C-EDOS

SIMULATOR

SCTGEN Product

 Test Data

 Test Data

 DATA SETS

 CLTU

DATA SETS

TGT

E
B
N
E
T

TEST TAPE

GSFC/TGT

Figure 1-1. ETS System Architectural Overview

1-3

1.4 APPLICABLE DOCUMENTS

The following documents were used as references for development of system requirements. They further
clarify, support, and define SCTGEN objectives, and the information in provided this document.

a. Earth Observing System Data and Information System (EOSDIS) Test System (ETS) Functional
and Performance Requirements, 515-4FRD/0294, September 1995.

b. Earth Observing System Data and Information System (EOSDIS) Test System (ETS) Operations
Concept, 515-3OCD/0194, May 1995.

c. Data Format and Control Book for EOS-AM Spacecraft, Interface Control Document (ICD) 106,
Martin Marietta Corporation, Astro Space, April 1994.

d. Consultative Committee for Space Data Systems, Recommendations for Space Data System
Standards: Advanced Orbiting Systems (AOS), Networks and Data Links, 701.0-B-2, November
1992.

e. Consultative Committee for Space Data Systems, Recommendations for Space Data System
Standards: Telemetry Channel Coding, CCSDS 101.0-B-3, May 1992.

f. Consultative Committee for Space Data Systems, Recommendations for Space Data System
Standards: Time Code Formats, CCSDS 301.0-B-2, April 1990.

g. Consultative Committee for Space Data Systems, Recommendations for Space Data System
Standards: Packet Telemetry, CCSDS 102.0-B-3, November 1992.

h. EOS Data and Operations System (EDOS) - EOSDIS Backbone Network (EBnet) Interface
Control Document, 510-ICD-EDOS/EBnet, August 1995.

i. ETS-EBnet Interface Control Document (TBS).

j. Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (TGT) - EDOS Interface
Control Document (TBS).

k. EDOS-Distributed Active Archive Center (DAAC) Interface Control Document (TBS).

l. EDOS Functional and Performance Specification, 560-EDOS-0202.0004, NASA/GSFC,
December 18, 1992.

m. EDOS External Interface Control Document Data Format Control Document, July 1995.

n. High-Rate Data Test Equipment for EOS-AM Spacecraft Requirements Document, GSFC,
NAS5-32500, Martin Marietta, March 1994.

1.5 DOCUMENT ORGANIZATION

This document is organized as follows:

Section 1 provides introduction.

Section 2 defines external interfaces as they pertain to SCTGEN.

Section 3 describes the SCTGEN Graphical User pertaining to the simulation needs of ETS.

Section 4 provides the reference documentation needed to understand the scripts.

Section 5 contains the complete user documentation for the scripting language.

Section 6 contains examples of sample scripts and test data.

1-4

1.6 TERMINOLOGY

1.6.1 DEFINITIONS

Data Format: Refers to data unit structure. Includes, but is not limited to, data unit size, description
of fields within the data unit and any constraints therein, and format identification.

Data Layer: Refers to level of encapsulation of the source data. Packet data layer implies that
source data is encapsulated in CCSDS or non-CCSDS packets. Frame or Virtual Channel Data Unit
(VCDU) data layer implies that source data is encapsulated within frames or VCDUs, etc.

Data Scenario: Refers to design of test data to be generated. Includes the order in which data units
are multiplexed within each level, the order in which data units are multiplexed at the next level of
encapsulation, etc. For example, the order of packets (as distinguished by Application Identifiers
[APID]) within each Virtual Channel Identifier (VCID), and the frequency with which these VCIDs are
encapsulated into CADUs and multiplexed to form a CADU test data product.

Data Segment: Refers to a collection of time-ordered packets. A data stream may have many
collections of time-ordered packets within the collection, but out of time order from collection to
collection (for example, a real-time downlink and a playback dump).

Data Stream: Refers to a serial stream of binary data contained in a test data product.

Data Unit: Refers to level of encapsulation of actual user data. For example, a packet data unit
consists of a header, source data, and trailer; a frame data unit consists of a header, data unit zone,
and trailer. The frame data unit zone may contain packet data units, or pure source data.

Specifications: Refers to user-defined parameters for the generation of test data. Includes data
format, data scenario, level of encapsulation, special instructions for data manipulation (what, where,
and how many), error insertion, timecode deviation, gap insertion, and size of final product.

Test Data: Refers to final product generated by SCTGEN. This could be a concatenated stream of
bit stream data, packet data units, frame data units, block data units, etc., stored in file format, or as
a binary stream on tape.

Data Patterns: Refers to data within the application data zone of a packet. This data can be any
pattern, either defined by the user, or read in from a file.

Packet Stream: Refers to concatenated serial stream of multiplexed packets from a single virtual
channel.

Bit Stream: Refers to a single stream of data bits encapsulated in frames.

Frame Stream: Refers to a concatenated serial stream of multiplexed frames that comprise a single
data stream.

1-5

1.6.2 ACRONYMS

APID Application Identifier
CADU Channel Access Data Unit
CCB Configuration Control Board
CCSDS Consultative Committee for Space Data Systems
CDS CCSDS Day Segmented
CLCW Command Link Control Word
CLTU Command Link Transmission Unit
CODA Customer Operations Data Accounting
CVCDUCoded Virtual Channel Data Unit
DAAC Distributed Active Archive Center
DCN Documentation Change Notice
DFCD Data Format Control Document
DSN Deep Space Network
EBnet EOSDIS Backbone Network
EDOS EOS Data and Operations System
EDS Expedited Data Set
EDS Expedited Data Sets
EDU EDOS Data Unit
EOC EOS Operations Center
EOS Earth Observing System
EOSDIS EOS Data and Information System
ESDIS Earth Science Data and Information System
ETS EOSDIS Test System
GN Ground Network
GSFC Goddard Space Flight Center
ICD Interface Control Document
IV&V Independent Verification and Validation
LaRC Langley Research Center
LZP Level Zero Processing
M_PDUMultiplexed Protocol Data Unit
NCC Network Control Center
OMD Operations Management Data
PDS Production Data Set
PDU Protocol Data Unit
PSS Portable Spacecraft Simulator
RDF Rate-Buffered Data File
SCID Spacecraft Identifier
SCITF Spacecraft Integration and Test Facility
SDU Service Data Unit
SN Space Network
STGENSimulated Telemetry Generation
TCP/IP Transmission Control Protocol/Internet Protocol
TDRSS Tracking and Data Relay Satellite System
TGT TDRSS Ground Terminal
TPCE Telemetry Processing Control Environment
TPGENTest Pattern Generator
TSS TDRSS Service Session
VCID Virtual Channel Identifier
VLSI Very Large Scale Integration
WOTS Wallops Orbital Tracking Station
WSGT White Sands Ground Terminal

2-1

SECTION 2
INSTALLATION

2.1 INTRODUCTION

This section provides information on SCTGEN installation as it pertains to the ETS project.

2.1.1 INSTALLATION REQUIREMENTS

a. Load SCTGEN on to the work-station platforms in pre-created directories.

b. Ensure that there are Ethernet taps off EBnet, one for the HRS-CDS, one for the LRS-CDS, and
one for the TRS.

2.1.2 INSTALLATION PROCEDURES

a. Verify that the system Internet Protocol (IP) addresses are correct. If the system is not on a local
network, check with the System Administrator to ensure that the addresses are acceptable.

b. Connect external Ethernet ports to the TRS and HRS, LRS workstations.

c. Connect internal FDDI port to the VHS and HRS workstation (optional).

d. Bring up the Menu Controller on the workstation.

e. Verify that the hard disks are turned on.

f. Turn on power to the chassis.

g. Verify boot process chassis.

2.1.3 DIRECTORY CONTENTS

The directory contents of SCTGEN are described in the following paragraphs. The complete contents of
the directories are described in the SCTGEN Delivery Document.

2.1.3.1 SCTGEN Graphical User Interface Release 1.01

The source and executables are contained in the listing under the directory titled ‘sctgen1.01. The files
and directories in /sctgen1.01 are described as follows:

bin<dir>
data<dir>
doc<dir>
script<dir>
source<dir>

2-2

2.1.3.2 SCTGEN Software Release 1.0

The source and executables are contained in the listing under the directory titled ‘Tiger’. The files and
directories in /Tiger are described as follows:

/Tiger:

README
login
revision.doc
bin<dir>

estp
sctgen

h<dir>
lib<dir>
scripts<dir>
src<dir>
work<dir>
docs<dir>
reference<dir>

user<dir>

3-1

SECTION 3
SCTGEN GRAPHICAL USER INTERFACE

3.1 TOP-LEVEL MENU DESCRIPTIONS

The SCTGEN GUI will run on the CDS, and has been developed using TCL/TK tools. The Menu
Controller running on the work-station will have an icon that will start up the main panel of the SCTGEN
GUI. In the absence of the Menu Controller, the GUI may be started up by typing in ‘sctgui’. The main
panel or window will allow the user to select, for the different ETS test data products such as CADU,
PDS, EDS, TC and packet products, the following SCTGEN options:

1. Create a new scenario
2. Load a previously created scenario
3. Clear a previously loaded scenario
4. Generate a script from a scenario
5. Generate a data file from a script
6. Create and insert error, events and tasks for a scenario

3-2

Figure 3-1. SCTGEN Main Menu Panel

However, some of these options are available only after the test data scenario has been designed and
formatted as per the user’s needs. Figure 3-1 shows the first menu of the SCTGEN system and the
following paragraphs will describe the menus for the different test data development sequences.

Note: the user must exit the SCTGEN main menu before exiting from the UNIX window that started up
the SCTGEN Graphical User Interface.

3.2 RETURN LINK DATA SCENARIO DEVELOPMENT

The first step is to develop a scenario for data generation. The example illustrated in Figure 3-2, shows
the input for the generation of a return link CADU stream. The CADU button is first selected followed by
the new Scenario option from the scenario pull-down menu.

3-3

The information that is input at this stage is the Spacecraft Identifier (SCID), VCID, and APID. Once
these fields are selected the depression of the view button will pop up the next menu panel, Figure 3-3.
Figure 3-3 shows the graphical description of the Data Scenario defined in Figure 3-2.

Figure 3-2. Data Scenario Menu Panel

From this point on each of the icons shown on the CADU stream menu open up to more detailed
windows, for example: sc42out, will open the Output Definition Menu Panel shown in Figure 3-4, which
will allow the user to define the number of frames, the format of the File being created, and the Device
that is to be generated as a product.

For Output type, the user should select File or Sim. The other two options are not applicable with this
version of the software.

3-4

Figure 3-3. CADU Data Scenario Menu Panel

When ‘File’ is selected, this means that the output that is created is a plain file. ‘Sim’ is selected when
creating test data to be loaded on to the ETS Simulator Card for subsequent output as a CADU data
stream. The Simulator card DRAM is loaded with the base file and the update file refreshes the base file
with updates via the on-board FIFO. This means that two files are created, the base file, ‘filename.b’,
and the update file, namely filename.u’*. The number of units in this case defines the number of frames
the user wants in this test data file. The File format defines whether the output file has a header and
trailer or is just a plain stream of frames. Again, in the case of ETS the ‘File”option for the return link

3-5

data is in a plain format. The File size is applicable when the test data to be created as a number of
files, the size of each file can be selected.

Note: In the case of the ‘SIM’ format, the maximum number of records per side is 2048 for EOS-AM
1024-byte frames. In all cases this number has to be divisible by 4. Do not use the 100 units default, as
a minimum of 4096 is needed if the whole 4M of memory is to be filled.

Figure 3-4. Output Definition Menu Panel

To define a file name Device should be selected by depressing the ‘other’ button. This will bring up the
next menu panel, Figure 3-5 Device Definition. Here the Access mode is defined to be ‘write’, and the
file name and extension are user selectable. The Device type implements either the creation of the test
data file or the pseudo-generation of the data file, i.e., if the user wants to see the effects of the
multiplexing and error insertion strategy without actually generating the data, the ‘null’ option together
with the option to create an expected results file. allows only the Expected Results file to be created,
with an extension of ‘filename.er’. Note, the option to create an Expected Results File has to be
specifically entered. The menu panel that enables the creation of the expected results file will be
described later on in this scenario.

Once the Device is defined, the OK button must be depressed to save the input at this level. This will
take the user back to the Output Definition Menu, where once again the OK button has to depressed to
save the input at that level. Depressing the close button will nullify the input entered by the user.
Closing this menu will take the user back to the graphical menu where the next button, ‘sc42mux’ in the
hierarchchy is depressed. This button will open up the Frame Multiplexer for sc42 Menu Panel, as
shown in Figure 3-6.

3-6

This menu panel will allow the user to select the interleaving strategy for the frames that comprise the
CADU stream by VCID number. There are two ways that the strategy can be defined, one by specifying
the Frame content by range, i.e.,, in this option the data source is selected by depressing either the ‘idle’,
or one of the available ‘vcxx’ buttons.

Figure 3-5. Device Definition Menu Panel

The idle frame may be created by any one of the available vc sources by selecting the vc source and
depressing the ‘SetIDLE’ button. The start frame count and the stop frame count is then entered for the
selected VCID or Idle frame. The next ‘vcxx’ is then selected and the start and stop frame count is
entered. The other option is to use the ‘set pattern option’. Here, once again the ‘vcxx’ or idle is selected
and the start, the number of frames in an instance, the total number of frames in the pattern and the
number of times the pattern is to be repeated is input. For example, ‘vc2’ starts at CADU count number
2, i.e., ‘Start FRAME = 2’; appears once, i.e., ‘No. FRAME of Data = 1’; is repeated once every two
frames, i.e., /Total FRAME in Pattern = 2’; and this pattern is repeated forever, (until the selected
number of CADUs are created), i.e., ‘Repeat Count for Pattern = 0’*. An option to input the multiplexing
strategy via a file, invoked by depressing the ‘MUXtool’ button will be implemented in the future (TBD).
In either of the two options once the multiplexing strategy is defined the ‘Set Range’ or ‘SetPattern’
button has to be depressed before the menu panel is closed to save the input. Once the multiplexing
strategy is entered, the View button, elongates the Menu Panel, showing the user the composition of the
‘scxxmux’ stream by VCID and the percentage of each ‘vcxx’ within the ‘scxxmux’ stream. The CLOSE
option, closes the menu panel and takes the user back to the graphical display of the CADU Stream
scenario.

The next step in the hierarchy is the Frame Definition. The number of VCIDs defined provides the
number of Frame definition options available to the user. Suppose we have two VCIDs defined, thus
there are two Frame Definition Menu Panels that have to be brought up and values introduced. On
depressing the ‘vc1’ button, the Frame Definition Menu shown in Figure 3-7 is displayed.

The first two values on the menu panel are already defined from the initial input at the top level, i.e.,
Figure 3-2. For ‘Service’, if we select Path service, this means that the CADUs will contain Packets
identified by APIDs. By selecting ‘Path’, the Service Definition Menu Panel is displayed. In this version
of SCTGEN for ETS, no values are entered in this menu.

Once the Service is defined, the OK button will save the entries, and the CLOSE button will return the
user to the Frame Definition menu.

3-7

Note: (Start, Date, Span) in this case Figure 3-6 refers to the first three entries, i.e.,, Start=Start Frame,
Data=No. Frame of Data, Span = total frame in pattern to be replaced.

Figure 3-6. Frame Multiplexer Menu Panel

The next three entries in Figure 3-7 are user selected values for Frame length; the maximum number of
Frames to be created from VCID being defined , i.e., ‘vc1’ in this definition; and the Fill pattern to be
used in the VCID stream for Idle or Padded frames. For EOS-AM, the frame length is 1024 bytes. The
next entry defines the flags in the frame header, to be Realtime or Playback, and the Event button allows
the user to define an Event. The option to select a Frame Sync, displays the SYNC Definition Menu
Panel, shown in Figure 3-8, that accepts that Sync Length and the Sync Pattern. Depressing the OK
button saves the input and CLOSE returns the user to Figure 3-7.

3-8

Figure 3-7. Frame Definition Menu Panel

When Path Service has been selected, the Frame Data option still has to be selected to define the
packet mux that will feed this Virtual Channel stream, as shown in Figure 3-9. For cases other than Path

3-9

Service, the Frame Data Definition Menu Panel, shown in Figure 3-10, will be displayed, to define the
Data Region within the Frame.

Figure 3-8. SYNC Definition Menu Panel

Figure 3-9 enables the user to optionally select the creation of the Expected Results File, which will by
default have the name of the data scenario with a different extension, i.e., ‘scenariofilename.er’.

Figure 3-9. Frame Data Definition Menu Panel

3-10

The Frame Data can be a ‘Fixed’ pattern, ‘Random’ pattern, ‘Step’ pattern, or even read from a ‘File’.
When the ‘File’ option is selected, the name and path of the file have to be entered. In all the other
cases the value has to be entered. OK and subsequently CLOSE, will save the input and return the user
to Figure 3-7.

Figure 3-10. Frame DATA Definition Menu Panels

3-11

For Real-Time data the user may want to insert an OCF field in the CADU. The ‘Yes’ option to the OCF
button will display the OCF Definition Menu Panel, shown in Figure 3-11. The length of the OCF and the
content may be defined in this menu. The content may optionally be read from a file, in which case the
full path name of the file has to be entered. OK and subsequently CLOSE, will save the input and return
the user to Figure 3-7.

Figure 3-11. OCF Definition Menu Panel

The RS encode option when selected will display the RS Definition Menu Panel, shown in Figure 3-12.
An RS interleave level from 1 to 16 may be selected. The RS Dual option and the RS Empty option may
be selected or deselected independently. When the RS Empty option is selected, this means that
SCTGEN will insert zeros in place of the Reed-Solomon check symbols at the end of each frame. OK
and subsequently CLOSE, saves the input and returns the user to Figure 3-7.

3-12

Figure 3-12. RS Definition Menu Panel

PN encoding or randomization encodes data according to CCSDS polynomial algorithm. When selected,
it will encode all the data except sync pattern in a CADU stream. PN encoding is usually performed after
the Reed Solomen. However, user has the capability to change that through script using task statements.
See more detail on TASK section. The CRC and Invert option are rarely used, therefore, user can
essentially ignore them at this moment. Finally the user has the capability to insert errors in the Frame
at CADU Frame specific fields. Namely, the Frame Header fields, and the Frame Data Region.
Selecting the ‘Yes’ option on the next entry in the Frame Definition, will display the Error Listing Menu
Panel, shown in Figure 3-13.

For all VCIDs, any number of errors may be introduced. In the Error Listing Menu, the AddError is
depressed to display the default Error Definition menu panel, shown in Figure 3-14, which comes up for
the ‘Flip’ error type. In this menu, the user can label the type of error; select the method by which the
error is to be inserted, i.e., by flipping bits, or setting bits to specific values, or by completely dropping
frames identified by the VCID index or count.

3-13

Figure 3-13. Error Listing Menu Panel

3-14

Figure 3-14. Flip Error Definition Menu Panel

When bits are to be flipped, Figure 3-14, the exact location of the bits within the frame, and the number
of bits to be flipped are specified. The user can also specify whether this error event is to be
implemented on all the Frames from this VCID stream or certain frames or ranges of frames as specified
by their index in the stream. If all the frames are selected to have the error then the ‘All’ option is
selected. If specific units are ear-marked for error insertion, then the ‘Event’ option i.e.,, the instance
when a change is to be implemented, is selected which displays the Event Listing Menu Panel, shown in
Figure 3-15.

3-15

Figure 3-15. Event Listing Menu Panel

The AddEvent option displays the Event Definition Menu Panels, shown in Figure 3-16a, that allow the
user to select the frames for error insertion. The Event name is user selectable and the occurrence of
the event can be either a value or a unit. The Event Spec defines whether a certain range of units or
frames specified by their unit number in the stream, or a recurrent pattern is specified based on the start
frame number; how many contiguous frames from this frame stream; how many frames are to be
skipped; and how many times this pattern is to be repeated, Figure 3-16. The section on the script
descriptions will provide examples of both options. The OK and CLOSE options will save the selected
input and return the user to the Error Definition Menu Panel.

Similarly when bits are set to certain values, the user can select the label, occurrence, location and
quantity of the bits and the value to be set, Figure 3-17. In dropping Frames, the user can select frames
by their index or unit number in the VCID stream. The Convey function is optionally set to convey the
error up to the RS encoding process. If this is not set, the RS encoding process will correct the errors
inserted in the Frame, and the created test data will not contain the Frame level errors. The other
buttons shown in Figure 3-13 are self-explanatory. The View* Error button lists all the Errors; the Edit
Error Button allows changes to selected errors as labeled; the DelError button allows the user to
selectively delete an error entry, and finally the Clear Error button clears out all the listed errors.

Note: The “all” event listed on the Event Listing menu panel is a system event. This event appears in
the script, but it is ignored unless the “all” event is defined for that particular script.

3-16

Figure 3-16a. Event Definition Menu Panels

3-17

Figure 3-16b. Event Definition Menu Panels (Cont’d)

OK and subsequently CLOSE, will save the input and return the user to the Menu Panel shown in Figure
3-7. Depressing OK once more will return the user to the CADU Stream Graphical display Shown in
Figure 3-3.

Unlike previous version of the SCTGEN GUI, the user can now use the option to view or edit previously
created events using the Event Listing menu panel. Select the event which you would like to view and
depressing ViewEvent button will display Event View Listing Menu Panel. Event View Listing Menu
Panel will show all the range and recurrent statements in table forms. To view them, simply click either
Range or Recur radiobar button. When you are done viewing a specific event, click OK or CLOSE to
exit Event View Listing Menu Panel to return Event Listing menu Panel (Fig 3-15).

3-18

Fig 3-16c Event View Menu Listing Panel

3-19

EditEvent allows users to edit previous saved event without manually changing the script. The user can
change every facet of a Event ranging from EventName to starting unit of a range or recur statement.
The user, however, need to be aware that SCTGEN GUI has only limited error checking capability.
Therefor, it is the responsibility of the user to ensure correctness of the script to avoid run-time errors.

Depressing EditEvent will display EventEdit Listing Menu Panel. The options should be intuitive to the
user. Clearpatterns will delete all entry from panel as well as disable all other buttons except
AddPattern, OK and CLOSE. The logic behind disabling all other buttons is to remind user that there is
no other range or recurrent statements available at this time. A user can either choose to AddPattern
which user should do, or simply exit. Warning: Event without statements might cause run-time error for
SCTGEN. DeletePattern button allows the user to selectively delete an error entry, and appropriate
buttons will be disabled when all entries are deleted. EditPattern and AddPattern corresponding changes
either range or recurrent statements or adds a new specification to a event. (See Fig 3-16e, and Fig 3-
16f).

Fig 3-16d EventEdit Listing Menu Panel

3-20

Fig 3-16e Event Edit EditPattern Listing Menu Panel

3-21

Fig 3-16f. Event Edit ADDpattern Listing Menu Panel

3-22

Figure 3-17. Set Error Definition Menu Panel

The next step in the process is to define the Packet multiplexing strategy that will define the stream
packet source for the frames designated by the selected VCID stream.

Clicking on any one of the ‘vcxmux’ button, in the menu panel shown in Figure 3-3, will display the
Packet Multiplexer Menu Panel for the selected VCID, shown in Figure 3-18. Similar to the Frame
Multiplexing strategy, the Packet Multiplexing strategy can either use the ‘Set Range’ option for
interleaving the order of packets within the ‘vc’ stream, or the ‘SetPattern’ option to select a recurring
pattern. As in the case of the Frame Multiplexing menu, there is an option to read in a file that lays out
the complete interleaving pattern within the virtual channel, by invoking the MUXtool option. The GUI
does not support this option, but, the user can manually insert the arguments to use the MUX tool option
as described in the script language description in the latter part of this document. Once the multiplexing
strategy is entered, the View button, elongates the Menu Panel, showing the user the composition of the
‘vc1mux’ stream by APID and the percentage of each ‘apxxx’ within the ‘vc1mux’ stream. The CLOSE
option takes the user back to the graphical representation of the CADU stream, as shown in Figure 3-3.

The next step in the process is to define the packets within each APID stream. This is done by clicking
on a selected packet stream, ‘apxxxx’, displays the Packet Definition Menu panel shown in Figure 3-19.
The first three entries in this panel are already entered. The Version number is entered, which for EOS-
AM1 is Version 1. The Max entry is used to define the max number of packets that could be created
from this APID stream. This is especially important when reading from a raw graphics file, in which the
size is fixed. The option to create Telecommand packets is available. For return link data, this option is

3-23

set to ‘No’. The Packet Data has to be defined, and by selecting the ‘Yes’ option for Packet Data, the
Data Definition Menu Panel as shown in Figure 3-20a is displayed.

Figure 3-18. Packet Multiplexer Menu Panel

3-24

Figure 3-19. Packet Definition Menu Panel

If the Basic option is selected, only the default header definitions for time code can be entered for the
packet stream. If the optional button is selected, in addition to the default value for the time code, which
in this application for SCTGEN is tcEDOS, three other options are selectable. The contents of the data

3-25

region can be either of a ‘Fixed’ pattern; ‘Step’ pattern; ‘Raw File’ or a ‘Random’ pattern. When the ‘Raw
File’ option is selected, the menu panel shown in Figure 3-20b is displayed, where the name and path of
the file have to be entered. In the ‘Fixed’ and ‘Step’ options the values have to be entered. OK and
subsequently CLOSE, will save the input and return the user to Figure 3-19.

Figure 3-20a. Data Definition Menu Panel

3-26

Figure 3-20b. Data Definition Menu Panel (Cont’d)

To define the time-code within the packet header, the Second Header option is selected. This displays
the 2HDR Definition Menu panel, shown in Figure 3-21. Currently, there are three time code formats
defined for SCTGEN, tcEDOS, tcCUC and tcDAY. TcEDOS has been customized for EOS-AM
spacecraft.

Figure 3-21 Secondary Header Definition Menu Panel

3-27

Figure 3-21a. tcEDOS Time Code Panel

tcEDOS time code option is used to initialize and define the step size for the time-code. The ‘Day’ entry
defines the start day (Julian calendar) for the packet stream. The ‘MS of Day’ initializes the start time in
milliseconds of the day when the packet stream should start, and ‘MICRO of MS’ initializes the micro-
second granularity in the start time. The next two entries define the step in milliseconds and
microseconds between consecutive packets within the APID or packet stream. The user is provided with
the capability of defining a ‘Ramp’ function for the time code if required, and the correction due to Drift.
The values that can be entered in this boxes are described in the script description in later sections of
this document.

3-28

Figure 3-21b tcCUC Time Code Format

Alternatively, a user can choose tcCUC or tcDAY as secondary time format. tcCUC is CCSDS
Unsegmented Time Code (Figure 3-21b). The “CoarseBytes” indicates 4 Octets Coarse Time present
while “FineBytes” means 2 Octets Fine Time present. “Seconds” and “Fine” are No. of seconds and sub-
seconds time since epoc Jan.1, 1958, respectively. “Step Seconds” and “Step Fine” are increments for
“Seconds”and “Step Seconds”. “SecondOct” is a special field that must be set to “Yes” if it is simulating
PM Spacecraft. “OmitPfield” is rarely used and should be left to its default setting.

3-29

Fig 3-21c tcDAY Time Code

tcDAY is generic CCSDS Segmented time code format. “Day”, “MillisecondDay”, and “MicroMilliseconds”
are number of days, millisecond and microMilliseconds since epoc. The next two fields specified the
time increments for micro and mill seoncd. The rest of fields should be left to their default value.

OK and subsequently CLOSE, will save the input and return the user to Figure 3-19.

The next entry on the packet definition menu panel is the option of having variable length packets. This
option will be used for Telecommand packets and will be described in the later sections. When the ‘No’
option is selected for ‘Packet Variable Length’, a value for the ‘Packet Fixed Length’ has to be entered by
the user. The ‘Checksum’ option is either selected or not, and when selected this performs a checksum
on each packet and inserts the checksum value as the last byte in the packet data region. The Error’
insertion process follows the same steps used for the error insertion at the frame level, and the steps are
repeated here for completeness.

Selecting the ‘Yes’ option on the next entry in the Packet Definition, will display the Error Listing Menu
Panel, shown in Figure 3-22.

For all APIDs, any number of errors maybe introduced. In the Error Listing Menu, the AddError is
depressed to display the default Error Definition menu panel, shown in Figure 3-23, which comes up for
the ‘Flip’ error type. In this menu, the user can label the type of error; select the method by which the
error is to be inserted, i.e., by flipping bits, or setting bits to specific values, or by completely dropping
packets identified by the APID index or count.

3-30

Figure 3-22. Error Listing Menu Panel

3-31

Figure 3-23. Flip Error Definition Menu Panel

When bits are to be flipped, Figure 3-23, the exact location of the bits within the packet, and the number
of bits to be flipped are specified. The user can also specify whether this error event is to be
implemented on all the packets from this APID stream or certain packets or ranges of packets as
specified by their index in the stream. If all the packets are selected to have the error then the ‘All’
option is selected. If specific units are ear-marked for error insertion, then the ‘Event’ option is selected
which displays the Event Listing Menu Panel, shown in Figure 3-24.

3-32

Figure 3-24. Event Listing Menu Panel

Figure 3-26, that allow the user to select the packets for error insertion. The Event name is user
selectable and the occurrence of the event can be either a value or a unit. The Event Spec defines
whether a certain range of units or packets specified by their unit number in the stream, Figure 3-25a; or
a recurrent pattern is specified based on the start packet number; how many contiguous packets from
this stream; how many packets are to be skipped; and how many times this pattern is to be repeated,
Figure 3-25b. The section on the script descriptions will provide examples of both options. Once the
event is defined, the ‘Add Spec’ button MUST be depressed for the event to be registered, and then the
OK and CLOSE buttons in that order will take the user back to the Event Listing Menu in Figure 3-24.
The CLOSE options will save the selected input and return the user to the Error Definition Menu Panel.

Similarly when bits are set to certain values, the user can select the label, occurrence, location and
quantity of the bits and the value to be set, Figure 3-26. In dropping Packets, the user can select
packets by their index or unit number in the VCID stream. The Convey function is optionally set to
convey the error up to the RS encoding process. If this is not set, the RS encoding process will correct
the errors inserted in the Packet, and the created test data will not contain the Packet level errors.

3-33

Figure 3-25a. Event Definition Menu Panels

Figure 3-25b. Event Definition Menu Panels (Cont’d)

3-34

The other buttons shown in Figure 3-24 are self-explanatory. The DelError button allows the user to
selectively delete an error entry, and finally the Clear Error button clears out all the listed errors.

OK and subsequently CLOSE, will save the input and return the user to the Menu Panel shown in Figure
3-19. Depressing OK once more will return the user to the CADU Stream graphical display shown in
Figure 3-3.

Figure 3-27. Set Error Definition Menu Panel

At each stage in the hierarchy, when the user has completed entering the values needed for data
generation and saved (or ‘OK’ed the same), the box changes color from blue to green. When the box is
selected it changes color from blue to yellow. Once the whole data scenario has been entered, the user
can select the ‘Script’ option, whereby the Script Window is displayed, as shown in Figure 3-27a.

The script created has been commented to illustrate where the different argument values were input by
the user and how they should appear in the script. The commented script is shown as Figure 3-27b.

In this version of the SCTGEN GUI, the user can not use the error listing menu panel to view or edit
previously specified errors. One option is to view the errors in the generated scripts using the script
window and manually editing the error specification. The other option is to delete the selected error and
redefine the error.

3-35

Figure 3-27a. Script Window

###
Script File
Generated by SCTGEN GUI 0.15
###
Thu Dec 12 18:34:27 GMT 1996
###

* the first line main c(cadu) is created when the cadu scenario is selected *
1. main c(cadu)

* the output definition menu creates the second line *
2. output.plain inStream(sc42mux) device(cadu) max(100)

* the device definition menu creates the third line *
3. device.file.cadu name(cmtest3err.cadu) access(w)

MuxFRAMErangeScript

MuxFRAMEpatternScript

* the frame multiplexer menu for sc42 creates the fourth and fifth lines *
4. stream.mux.sc42mux.recur stream(vc1) start(1) repeat(0) span(2) occur(0)
5. stream.mux.sc42mux.recur stream(vc2) start(2) repeat(0) span(2) occur(0)

FrameScript

* the frame definition menu for vc1 and within this menu, the service definition, sync
definition, and RS definition menus create the sixth line *

6. stream.cadu.vc1 service(P) spid(42) vcid(1) -

3-36

 insertPDUheader(1) PDUheaderBitLength(16) -
 sync(1) frameSync(0x1ACFFC1D) syncBytes(4) -
 RSencode(1) RSinterleave(4) RSdual(1) RSempty(0) -
 length(1024) max(1000)

* the frame definition menu for vc2 and within this menu, the service definition, sync
definition, and RS definition menus create the seventh line *

7. stream.cadu.vc2 service(P) spid(42) vcid(2) -
 insertPDUheader(1) PDUheaderBitLength(16) -
 sync(1) frameSync(0x1ACFFC1D) syncBytes(4) -
 RSencode(1) RSinterleave(4) RSdual(1) RSempty(0) -
 length(1024) max(1000)

RegionScriptFRAME

* the frame definition menu for vc1 and within this menu, the service definition menu, creates
the eighth line *

8. stream.cadu.vc1.region.data type(C) inStream(vc1mux) lastUnit(I) -
 ERcomposition(1)

* the frame definition menu for vc1 and within this menu, the service definition menu, creates
the ninth line *

9. stream.cadu.vc2.region.data type(C) inStream(vc2mux) lastUnit(I) -
 ERcomposition(1)

MuxPACKETrangeScript
MuxPACKETpatternScript

* the packet multiplexer menu for vc1 creates the tenth and eleventh lines *
10. stream.mux.vc1mux.recur stream(ap0012) start(1) repeat(0) span(2) occur(0)
11. stream.mux.vc1mux.recur stream(ap0013) start(2) repeat(0) span(2) occur(0)

* the packet multiplexer menu for vc2 creates the twelfth and thirteenth lines *
12. stream.mux.vc2mux.recur stream(ap0021) start(1) repeat(0) span(2) occur(0)
13. stream.mux.vc2mux.recur stream(ap0022) start(2) repeat(0) span(2) occur(0)

PacketScript

* the packet definition menu for ap0012 creates the fourteenth line *
14. stream.pkt.ap0012 appid(0012) -

 version(1) max(100000) length(100) -
 2hdr(1) 2hdrLength(9)

Figure 3-27b Commented Script (Cont’d)

* the packet definition menu for ap0013 creates the fifteenth line *

15. stream.pkt.ap0013 appid(0013) -
 version(1) max(100000) length(200) -

2hdr(1) 2hdrLength(9)

* the packet definition menu for ap0021 creates the sixteenth line *
16. stream.pkt.ap0021 appid(0021) -

 version(1) max(100000) length(300) -
 2hdr(1) 2hdrLength(9)

* the packet definition menu for ap0022 creates the seventeenth line *
17. stream.pkt.ap0022 appid(0022) -

 version(1) max(100000) length(400) -
 2hdr(1) 2hdrLength(9)

RegionScriptPACKET

* the packet definition menu for ap0012 and within this menu, the packet data definition, and
secondary header definition menus create the eighteenth and ninteenth lines *

18. stream.pkt.ap0012.region.2hdr type(tcEDOS) -
 day(0) msOfDay(0) microOfMs(0) msStep(10) microStep(0) -
 ramp(0) drift() driftFreq()

19. stream.pkt.ap0012.region.data type(F) -

3-37

 pattern(0x01)

* the packet definition menu for ap0013 and within this menu, the packet data definition, and
secondary header definition menus create the twentieth and twenty-first lines *

20. stream.pkt.ap0013.region.2hdr type(tcEDOS) -
 day(0) msOfDay(0) microOfMs(0) msStep(10) microStep(0) -
 ramp(0) drift() driftFreq()

21. stream.pkt.ap0013.region.data type(F) -
 pattern(0x11)

* the packet definition menu for ap0021 and within this menu, the packet data definition, and
secondary header definition menus create the twenty-second and twenty-third lines *

22. stream.pkt.ap0021.region.2hdr type(tcEDOS) -
 day(0) msOfDay(0) microOfMs(0) msStep(10) microStep(0) -
 ramp(0) drift() driftFreq()

23. stream.pkt.ap0021.region.data type(F) -
 pattern(0x20)

* the packet definition menu for ap0022 and within this menu, the packet data definition, and
secondary header definition menus create the twenty-fourth and twenty-fifth lines*

24. stream.pkt.ap0022.region.2hdr type(tcEDOS) -
 day(0) msOfDay(0) microOfMs(0) msStep(10) microStep(0) -
 ramp(0) drift() driftFreq()

25. stream.pkt.ap0022.region.data type(F) -
 pattern(0x21)
#
Error statements
#
* the frame definition menu for vc1 and within this menu, the error listing definition, and set
error definition menus create the twenty-sixth line *

26. stream.cadu.vc1.error.set label(frmsyn) convey(0) event(1) -
 startbit(8) bits(8) v(5)

* the frame definition menu for vc2 and within this menu, the error listing definition, and flip
error definition menus create the twenty-seventh line *

27. stream.cadu.vc2.error.flip label(frmver) convey(0) event(1) -
 startbit(33) bits(8)

* the packet definition menu for ap0012 and within this menu, the error listing definition, and
flip error definition menus create the twenty-eightth line *

28. stream.pkt.ap0012.error.flip label(pkttime) convey(0) event(1) -
 startbit(49) bits(8)

* the packet definition menu for ap0021 and within this menu the error listing definition, and
set error definition menus create the twenty-ninth line *

29. stream.pkt.ap0021.error.set label(pktver) convey(0) event(1) -
 startbit(1) bits(16) v(9)
#
Event statements
#
* no other event statements were created *

Figure 3-27c Commented Script (Cont’d)

3-38

3.3 FORWARD LINK DATA SCENARIO DEVELOPMENT

Similar to the Return Link Data development, the first step is to develop a scenario for data generation.
Choosing the ‘new’ option on the scenario pull-down menu, will open a window that accepts the user
input. The following paragraphs will describe the development of a typical Forward Link Scenario. In the
menu depicted in Figure 3-28, the Telecommand or TC option is selected and subsequently the scenario
->new option is selected. The TC Data Scenario Menu Panel is displayed, as shown in Figure 3-29.

Figure 3-28. SCTGEN Main Menu Panel

3-39

Figure 3-29. Telecommand Data Scenario Menu Panel

3-40

From this point on each of the icons shown on the TC stream menu open up to more detailed windows,
for example: ‘Output’, will open the TC Output Definition Menu Panel shown in Figure 3-30, which will
allow the user to define the number of units, which in this case is TC blocks, the format of the File being
created, and the Device that is to be generated as a product. For Output type, the user should select
File. The other three options are not applicable with this version of the software. When ‘File’ is selected,
this means that the output that is created is a plain file. The instream name in this scenario is the name
of the block immediately below the ‘Output’ block in the TC Data Scenario menu panel, namely the
‘CmdBlk’ block. The number of units in this case defines the number of Telecommand Transfer frames
the user wants in this test data file. The File format defines whether the output file has a header and
trailer or is just a plain stream of frames. Again, in the case of ETS the forward link data is in a plain
format. The File size is applicable when the test data to be created as a number of files, the size of each
file can be selected.

Figure 3-30. TC Output Definition Menu Panel

To define a file name Device should be selected by depressing the ‘other’ button. This will bring up the
next menu panel, Figure 3-31 Device Definition. Here the Access mode is defined to be ‘write’, and the
file name and extension are user selectable. The Device type implements either the creation of the test
data file or the pseudo-generation of the data file, i.e.,, if the user wants to see the effects of the ordering
and error insertion strategy without actually generating the data, the ‘null’ option allows only the Expected
Results file to be created, with an extension of ‘filename.er’. Note, the option to create an Expected
Results File has to be specified.

3-41

Once the Device is defined, the OK button must be depressed to save the input at this level. This will
take the user back to the Output Definition Menu, where once again the OK button has to depressed to
save the input at that level. Depressing the close button will nullify the input entered by the user.

Figure 3-31. Device Definition Menu Panel

Closing this menu will take the user back to the graphical menu where the next button, ‘CmdBlk’ in the
hierarchchy is depressed. This button will open up the CmdBlk Definition Menu Panel, as shown in
Figure 3-32.

Figure 3-32 defines the CmdBlk Stream for the output TC Stream. This definition for the EDOS Ground
Message Header, will not require the user to calculate the length of the units that are being fed by the
instream ‘Physical’ block. In this version three different regions of the CmdBlk are defined. The data
region specifies the instream, which in this case is defined as the ‘Physical’ block; the fixed values that
are user selectable; and finally the PB5 time stamp region which allows day and time calculated from a
user-selectable epoch and the respective steps in these time units to be initialized.

The ‘MessageType’ , ‘Source’, Destination’ is user-selected with reference to the EDOS-EGS Interface
Control Document. The SPID for EOS-AM1 is ‘42’, i.e., 2-byte field, and the ‘StartSequence’ is defaulted
to start at ‘0’. The ‘Major’ and ‘Minor’ versions of the software are user-selectable, and for ETS are
defaulted to ‘0’ and ‘0’. The ‘Max Units’ field specifies the number of command blocks to be created and
is user-selectable. The stream is validated as being the ‘CmdBlk’ and the instream is specified
according to the scenario selected where the next block in the hierarchy is the ‘Physical’ stream, as
validated in the next region to be defined.

Once the Ground Message Header is defined the user selects the data region of the CmdBlk Menu
Panel, which open up the Data Region Definition, shown in Figure 3-33. The data region of the CmdBlk
definition allows the user to specify the instream, which in this case validates the ‘Physical’ as the next
block in the hierarchy, and the integral number of units to encapsulate.

OK and CLOSE returns the user back to the menu panel shown on Figure 3-32. The next step in the
CmdBlk definition is the definition of the PB5 Time Stamp. The PB5 is defaulted to with some
predefined values. If the user wants to change the PB5 values, the ‘Yes’ button has to be selected.
When the ‘Yes’ option is selected, the PB5 Region Definition Menu Panel, Figure 3-34 is displayed. The
PB5 Region Definition describes these options and the sample script at the end of this section shows the
script lines that are produced when the CmdBlk is defined using this menu panel. For this application,
SCTGEN has been customized for EOS-AM, and thus the ‘pb5’ option is used to initialize and define the
step size for the time-stamp that appears in the EDOS Ground Message Header.

3-42

Figure 3-32. Command Block Definition Menu Panel

3-43

Figure 3-33. Command Block Definition Menu Panel

The ‘Day’ entry defines the start day (Julian calendar) from a user selected epoch for the TC stream.
The default that has been calculated and set is from October 10, 1995. The ‘DayStep’ defines the day
increment and the default is 1 day at a time. The ‘Seconds’ initializes the start time in seconds of the
selected day, the ‘Milliseconds’ initializes the milliseconds and the ‘Microseconds’ initializes the
microseconds of the selected day of the TC stream time stamp. The next three entries, ‘SecondsStep’,
‘MilliStep’, and ‘MicroStep’ define the step in seconds, milliseconds and microseconds between
consecutive TC blocks within the TC stream.

The user is provided with the capability of defining a ‘Ramp’ function for the time stamp if required, and
the correction due to Drift. When the ‘Ramp’ option is selected, the user is prompted to specify the
number of units, in this case Command Blocks, that will have the same time stamp, before the time is
stepped up to the next defined value. The ‘Drift’ and ‘Drift Frequency’ allows the user to introduce a non-
uniform step in time at selected units. OK and CLOSE returns the user back to the CmndBlk Menu in
Figure 3-32.

The option to write the Error information into the ER file is selected at this stage by clicking on the ‘Yes’
button. Selected units may be tagged as dropped, such that the resulting instream will be devoid of
specific units as identified by their index or sequence count. The Drop Event is defined by selecting the
‘Drop Units’ option, whereby the Event Listing Menu Panel, shown in Figure 3-35, is displayed. The
Event Definition and the associated menus are described in the following paragraphs. Depressing the OK
button saves the input and CLOSE returns the user to Figure 3-29.

The AddEvent option displays the Event Definition Menu Panels, shown in Figure 3-36a, that allow the
user to select the CmdBlks to be dropped. The Event name is user selectable and the occurrence of the
event can be either a value or a unit.

The Event Spec defines whether a certain range of units specified by their unit number in the stream,
Figure 3-36a; or a recurrent pattern is specified based on the start unit number; how many contiguous
units from this stream; how many units are to be skipped; and how many times this pattern is to be
repeated, Figure 3-36b. The section on the script descriptions will provide examples of both options.
The OK and CLOSE options will save the selected input and return the user to the CmdBlk Definition

3-44

Menu Panel. OK and subsequently CLOSE, will save the input and return the user to the CmdBlk
Definition Menu Panel shown in Figure 3-32.

Figure 3-34. PB5 Region Definition Menu Panel

The OK and CLOSE options will save the selected input and return the user to the Main TC Stream
Menu Panel. Depressing ‘Physical’ allows the user to move to the next block in the heirarchy to be
defined. This displays the Physical Definition Menu Panel shown in Figure 3-37. This menu will enable
the user to define the Acquisition bits in the Physical steam that will be pre-pended to the instream, which
in this case is 16 bytes, and 8 idle bits appended, which is shown in Figure 3-37.

3-45

Figure 3-35. Event Listing CmdBlk Menu Panel

3-46

Figure 3-36a. Event Definition Menu Panels

3-47

Figure 3-36b. Event Definition Menu Panels (Cont’d)

The next menu entry validates the name of the stream as ‘Physical’, and accepts the name of the
instream, which is the next block on the heirarchy, i.e., ‘cltu’. The maximum number of units is user
selectable. The option to include the statistics in an expected results file is selected by using the ‘Yes’
option for ER file; and the ‘Drop Units’ option is selected by depressing the ‘Yes’ button. When the ‘Drop
Units’ option is selected, the ‘Drop Event’ has to be selected on the ‘Event Listing’ menu (similar to that
shown in Figure 3-35) which will be displayed. The definition of the ‘Event’ is similar to that described for
the ‘CmdBlk’ Definition.

The user entries are saved by depressing the OK button and CLOSE will return the user back to the
scenario menu shown in Figure 3-29.

3-48

Figure 3-37. Physical Definition Menu Panel

The next sequential step in the scenario is the defining the contents of the ‘Physical’ stream, namely the
CLTUs. Selecting this block on the TC Data Scenario menu will display the CLTU Definiton Menu Panel,
as shown in Figure 3-38.

The first entry in this menu is the ‘Code Block Length’ specification in bytes. The EOS-AM1 Interface
Control Document, Number 106, defines the code-block length as 6 octets (8-bit bytes). This will also
append a 6-byte Tail Sequence in the CLTU generation. The sample script at the end of this section
shows the format of the CLTU. The instream is predefined as a stream of ‘cltu’, and the Maximum
number of Units is user-selectable. The option to include this information in the Expected Results or ER
file and the option to ‘Drop Units’ specified by their unit index or sequence number is once again
available to the user. The Event Listing Menu, similar to that shown in Figure 3-35, is also displayed at
this hierarchical level to label and define the units to be dropped.

3-49

Figure 3-38. CLTU Definition Menu Panel

Once all the required information is entered, the OK button will save the user input and the CLOSE
option will take the user back to the Telecommand (TC) Data Scenario menu panel depicted in Figure 3-
29.

The next step in the scenario definition is to define the format and content of the TCTF or Telecommand
Transfer Frame. The first three entries in the menu, shown in Figure 3-39, will define the Spacecraft
Identification (SCID), the Virtual Channel Identification (VCID) and the Telecommand Transfer Frame
(TCTF) length in bytes. The length field may be left blank, since the TCTF ‘length’ is dependent on the
size of the packet, which has not yet been defined. The TCTF length is equal to the packet length plus
the TCTF header length of 5 bytes and the optional 2 bytes if CRC encoding is selected. CRC encoding
is selected by choosing the ‘Yes’ option.

Note: the TCTF ‘length’ includes the coding check symbols. Thus, the actual data in the TCTF is coded
to a 6 octal code block which consists of 5 bytes of data plus 1 byte encoding chech symbol. The EDOS
ground message header calculation at the end of this section shows an example of how this is generated.

The stream is validated if ‘tctf’ appears in the entry box, and the instream is selected as a Packet
Identifier APID, i.e., ap001. Once again the maximum units provides the user some control on how
many packets are to be created, and since there is one packet per frame selected for this option, the
number should be the same, i.e., 100. The ER option and the ‘Drop Units’ options are set up in the same
sequence of steps, as described in the earlier paragraphs for ‘CmdBlk/Record’, ‘Physical’, and ‘CLTU’.
This menu will also allow the user to optionally select the creation of the Expected Results (ER) file,
which will by default have the name of the data scenario with a different extension, i.e.,

3-50

‘scenariofilename.er’ Once the TCTF is defined, the OK button will save the entries, and the CLOSE
button will return the user to the TC Stream Graphical Menu, Figure 3-29.

The first step in the process of defining the packet stream is to enter the Packet Identification. By
selecting the Packet button on the TC Stream Menu, the Packet Identification Menu Panel, Figure 3-40,
namely the ‘Input Window’, is displayed. The Packet is identified by writing in the APID number, i.e.,
‘xxxx’. Selecting OK will display the Packet Definition Menu shown in Figure 3-41. This menu is used to
define the packets within the Packet/APID stream. The first four entries in this panel are already
entered. The ‘Max’ entry is used to define the max number of packets that could be created from this
APID stream. This is especially important when reading from a raw graphics file, in which the size is
fixed. The option to create Telecommand packets is selected for forward link data. The Packet Data
has to be defined, and by selecting the ‘Yes’ option for Packet Data, the Data Definition Menu Panel as
shown in Figure 3-42a is displayed.

Figure 3-39. TCTF Definition Menu Panel

3-51

Figure 3-40. Packet Identification Menu Panel

Figure 3-41. Packet Definition Menu Panel

3-52

Figure 3-42a. Data Definition Menu Panel

3-53

Figure 3-42b. Data Definition Menu Panel (Cont’d)

The contents of the data region can be either of a ‘Fixed’ pattern; ‘Step’ pattern; ‘Raw File’ or a ‘Random’
pattern. When the ‘Raw File’ option is selected, the menu panel shown in Figure 3-42b is displayed,
where the name and path of the file have to be entered. In the ‘Fixed’ and ‘Step’ options the values have
to be entered. OK and subsequently CLOSE, will save the input and return the user to Figure 3-41. For
Forward Link data, there is no secondary header, thus the Second Header ‘No’ option is selected.

If the variable length option is selected the Event Panel, shown in Figure 3-45, will be displayed. The
packet length, and the ‘Event’ that specifies the variation have to be defined. The ‘Event’ specification is
similar to the ‘Event’ specification for inserting errors and drop units. OK will save the values and return
the user back to Figure 3-41.

When the ‘No’ option is selected for ‘Define Variable Length’, a value for the ‘Packet Fixed Length’ has to
be entered by the user. The ‘Checksum’ option is either selected or not, and when selected this performs
a checksum on each packet and inserts the checksum value as the last byte in the packet data region.
The Error’ insertion process follows the same steps used for the error insertion in the Return-Link section
for the packet level, and the steps are repeated here for completeness. Selecting the ‘Yes’ option on the
next entry in the Packet Definition, will display the Error Listing Menu Panel, shown in Figure 3-43.

Any number of errors maybe introduced for the selected APID. In the Error Listing Menu, the AddError is
depressed to display the default Error Definition menu panel, shown in Figure 3-44, which comes up for
the ‘Flip’ error type. In this menu, the user can label the type of error; select the method by which the
error is to be inserted, i.e., by flipping bits, or setting bits to specific values, or by completely dropping
packets identified by the APID index or count.

3-54

Figure 3-43. Error Listing Menu Panel

3-55

Figure 3-44. Flip Error Definition Menu Panel

When bits are to be flipped, Figure 3-45, the exact location of the bits within the packet, and the number
of bits to be flipped are specified. The user can also specify whether this error event is to be
implemented on all the packets from this APID stream or certain packets or ranges of packets as
specified by their index in the stream. If all the packets are selected to have the error then the ‘All’
option is selected. If specific units are ear-marked for error insertion, then the ‘Event’ option is selected
which displays the Event Listing Menu Panel, shown in Figure 3-45.

The AddEvent option displays the Event Definition Menu Panels, shown in Figure 3-46a, that allow the
user to select the packets for error insertion. The Event name is user selectable and the occurrence of
the event can be either a value or a unit. The Event Spec defines whether a certain range of units or
packets specified by their unit number in the stream, Figure 3-46a; or a recurrent pattern is specified
based on the start packet number; how many contiguous packets from this stream; how many packets
are to be skipped; and how many times this pattern is to be repeated, Figure 3-46b. The OK and CLOSE
options will save the selected input and return the user to the Error Definition Menu Panel.

3-56

Figure 3-45. Event Listing Menu Panel

Similarly when bits are set to certain values, the user can select the label, occurrence, location and
quantity of the bits and the value to be set, Figure 3-47. In dropping Packets, the user can select
packets by their index or unit number in the VCID stream. The Convey function is optionally set to
convey the error up to the frame encoding process. If this is not set, the frame encoding process will
correct the errors inserted in the Packet, and the created test data will not contain the Packet level errors.
The other buttons shown in Figure 3-43 are self-explanatory. The DelError button allows the user to
selectively delete an error entry, and finally the Clear Error button clears out all the listed errors. OK and
subsequently CLOSE, will save the input and return the user to the Packet Definition Menu Panel shown
in Figure 3-41. Depressing OK once more will return the user to the TC Stream Graphical display shown
in Figure 3-29.

At each stage in the hierarchy, when the user has completed entering the values needed for data
generation and saved (or ‘OK’ed the same), the box changes color from blue to green. When the box is
selected it changes color from blue to yellow. Once the whole data scenario has been entered, the user
can select the ‘Script’ option, whereby the Script Window is displayed, as shown in Figure 3-48a.

3-57

Figure 3-46a. Event Definition Menu Panels

Figure 3-46b. Event Definition Menu Panels

3-58

Figure 3-47. Set Error Definition Menu Panels

The script created has been commented to illustrate where the different argument values were input by
the user and how they should appear in the script. The commented scripts are shown in Figure 3.48b.
The description of the EDOS Ground Message Header is shown in Figure 3-49.

3-59

Figure 3-48a. Script Window for the CmdBlk

3-60

3-61

###
Script File
Generated by SCTGEN GUI 0.16
###
###
###

* the first line main(tc) is created when the tc sceanrio is selected *
1. main c(tc)

* the output definition menu creates the second line *
2. output.plain inStream(block) device(tc) max(100)

* the device definition menu creates the third line *
3. device.file.tc name(cmtest3c.tcmd) access(w)

* the command block definition menu and within this menu the PB5 time stamp
definition menu create the fourth, fifth and sixth lines *

4. stream.cmdblk.block msgtype(3) source(5) destination(1) spid(42) -
major(0) minor(0) max(0) startSequence(0)

5. stream.cmdblk.block.region.data inStream(physical) integral(1)
6. stream.cmdblk.block.region.pb5 day(445) dayStep(0) seconds(0) -

milliseconds(0) microseconds(0) secondsStep(0) milliStep(10) -
microStep(0) ramp(0) drift(0) driftFreq(0)

* the physical definition menu creates the seventh line *
7. stream.tcphy.physical inStream(cltu) max(100) -

 sizeBits(0) idle(8) acquisition(128)

* the command link transfer unit definition menu creates the eightth line *
8. stream.cltu.cltu inStream(tctf) max(100) -

 codeblockLength(6) sizeBits(0)

* the telecommand transfer frame definition menu for vc1 creates the ninth line *
9. stream.tctf.tctf inStream(ap0001) max(100) -

 version(0) spid(100) vcid(1) aggregate(0)

PacketScript

* the packet definition menu for ap0001 creates the tenth line *
10. stream.pkt.ap0001 appid(0001) -

 version(0) length(60) tc(1) checksum(1) -
 variableLength(0)

RegionScriptPACKET

* the packet definition menu for ap0001 and within this menu the data definition
menu creates the eleventh line *

11. stream.pkt.ap0001.region.data type(F) -
 pattern(0xa5)

Event statements

* no event statements were created *

Figure 3-48b. Commented Script for the CmdBlk

3-62

03000501 00837A00 EDOS GMH (24)
00000000 002A0000
0000007F 00000000

AAAAAAAA AAAAAAAA Acquisition (16)
AAAAAAAA AAAAAAAA

EB90 Start Sequence (2)

0064044000 9C TCTF Hdr. within codeblock (codeblock = 6)

1001C00000 96 Packet Hdr.(5/6). within codeblock
35A5A5A5A5 B0 Packet Hdr.(1/6) + Data within code block
A5A5A5A5A5 BA Source Data within code block
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A5A5 BA “
A5A5A5A54F 72 Source Data(5/6) + checksum within code block

55 Idle (1)

55555555 5555 Tail Sequence (= codeblock length = 6)

Figure 3-49. EDOS Ground Message Header Calculation and Format

3.4 EODS DATA PRODUCTS

SCTGEN can also be used to create the EDOS Data Products. These products are the Production Data
Sets (PDS), Expedited Data Sets (EDS), Rate Buffered Files (RBF), and EDOS Data Units (EDU). The
products use specific classes in the SCTGEN software and each one of them will be described in the
following paragraphs.

3.4.1 PRODUCTION DATA SETS

The main SCTGEN GUI menu panel with the PDS option selected is shown in Figure 3-50. The process
used to define a PDS is the same as for an EDS, which is described in Section 3.4.2. PDS files will be
given the extension “PDS”.

3-63

Figure 3-50. SCTGEN Main Menu Panel

3-64

3.4.2 EXPEDITED DATA SETS

The main SCTGEN GUI Menu Panel with the EDS option selected is shown in Figure 3-51. Selecting
the menu option scenario -> new will open the EDS Input Window, shown in Figure 3-52.

Figure 3-51. SCTGEN Main Menu Panel

3-65

This window allows the user to specify the Spacecraft ID. After entering the selection, OK will display
the EDS Scenario Definition Menu Panel, shown in Figure 3-53.

Figure 3-52. EDS Input Window Definition Menu Panel

This menu enables the user to enter the Spacecraft Identifier, VCID, APID and respective packet length
for the EDS to be created. When all the entries are filled in, the OK button saves the input and VIEW
takes the user to the EDS Stream graphical menu, shown in Figure 3-54. Each box in the heirarchy is
defined by selecting the box and displaying the definition menus.

Figure 3-53. EDS Scenario Definition Menu Panel

3-66

The first box that is selected displays the Output Definition Menu Panel, shown in Figure 3-55. The
Output is defined such that the construction record is created with the EDS. The first selection is the
output type, and for EDS, this button is selected. The other fields are entered in with reference to the
EDOS-EGS ICD. The first field specifies the size of each data set file within the EDS.

Thus, if the total size of the Data Set is 12700 KB, the user could elect to have 2 smaller files, each of
6350 KB. The VCID and SPID are entered in automatically from the EDS Scenario Definition entries.
The major and minor software versions are user-selectable. The Data Set counter is a part of the
Construction Record, and the range is from 0-9. The default value of 0, ensures that the first file is
numbered from 0. The next field validates the output stream name and the instream in this case is a
vcNNmux stream, which can input up to three different streams of packets from the Packet Producers.
For the example described, the vcNNmux will be fed by two APID streams ‘ap0320’ and ‘ap0321’.

The ‘Max Units’ restricts the number of actual packets to 1000. The Major and Minor entries are user
selectable for specifying the software version.

Note: This version of the software needs to have a non-zero value entered for file size.

Figure 3-54. EDS Stream Definition Menu Panel

Once the fixed values are input, the time-stamps have to be initialized. The Creation Date when
selected will open the Creation Definition Menu Panel, shown in Figure 3-56. The create date follows the
convention “yydddhhmmss”, which is d=days, h=hours, m=minutes, and s=seconds. OK saves the input

3-67

and returns the user back to the Output Definition Menu Panel, shown in Figure 3-55. Selecting the SC
Time, displays the SC Time Definition Menu Panel, shown in Figure 3-57. This menu is easier to fill as it
only requires the day, seconds of the day; milliseconds of the day, and microseconds of the day. OK and
CLOSE return the user to the Output Definition Menu Panel.

The ‘PB5 time’ is selected to initialize the time stamp in the ESH Header. Depressing the ‘Yes’ button,
displays the ESH Definition Menu Panel, shown in Figure 3-58. A pair of times have to be entered, i.e.,,
start time and stop time for each segment of data. The ‘Day’ entry defines the start day (Julian calendar)
from a user selected epoch for the Packet stream within the PDS. The default that has been calculated
and set is from October 10, 1995.

Figure 3-55. Output Definition Menu Panel

The ‘DayStep’ defines the day increment and the default is 1 day at a time. The ‘Seconds’ initializes the
start time in seconds of the selected day, the ‘Milliseconds’ initializes the milliseconds and the
‘Microseconds’ initializes the microseconds of the selected day of the Packet stream time stamp. The
next three entries, ‘SecondsStep’, ‘MilliStep’, and ‘MicroStep’ define the step in seconds, milliseconds

3-68

and microseconds between consecutive packets within the EDS. The user is provided with the capability
of defining a ‘Ramp’ function for the time stamp if required, and the correction due to Drift. When the
‘Ramp’ option is selected, the user is prompted to specify the number of units, in this case Packets, that
will have the same time stamp, before the stime is stepped up to the next defined value.

Figure 3-56. Creation Definition Menu Panel

The ‘Drift’ and ‘Drift Frequency’ allows the user to introduce a non-uniform step in time at selected units.
OK saves the input and returns the user back to the Output Definition Menu Panel. Once all the entries
in the Output Definition have been entered and saved, the CLOSE button will return the user back to the
EDS Stream Menu shown in Figure 3-54.

3-69

Figure 3-57. SC Time Definition Menu Panel

The next step in the definition is to define the multiplexing strategy for the APID streams within the EDS.
Selecting the ‘vcXXmux’ button on the EDS Stream Menu Panel, will display the Packet Multiplexer
Menu Panel shown in Figure 3-59. The commonest strategy will be to concatenate the APIDs serially,
i.e., first the packet stream from APID 320 and then the packet stream from APID 321.

Finally, the last button on the EDS Stream is selected to define the Packet Stream. For each APID, a
separate menu has to be opened. The Packet Definition Menu Panel for APID 320, shown in Figure 3-
60, is the same as that displayed in Sections 3.3 and 3.4. However, in this case the Packet Data is
defined for Return Link Data, so the Telecommand Option is not selected. When Packet Data is
depressed, the Data Definition Menu Panel, (see Figure 3-42a) is displayed. The contents of the Packet
Data are defined in the same way as they were defined for the PDS scenario described in the previous
section. The ‘Fixed Pattern’ option allows the user to input a fixed pattern that will be repeated in the
application data region of the packets. If the data is to be fed in from an external source, the device and
path name have to be entered when the menu panel, under ‘Raw File’, is displayed. Once all the entries
have been completed, the OK button saves the input and CLOSE returns the user to the Packet
Definition Menu Panel. The ‘Step’ and ‘Random’ Pattern are described in the user reference and detail
script guide included in later sections of this document.

The Spacecraft ID, Channel or VCID, and Packet Identifiers are pre-entered from the other menu panels.
The secondary header option is selected as ‘Yes’ and the length defined. To define the time-code within
the packet header, the Second Header option is selected. This displays the 2HDR Definition Menu
panel.

For this application, SCTGEN has been customized for EOS-AM, and thus the tcEDOS option is used to
initialize and define the step size for the time-code. The ‘Day’ entry defines the start day (Julian
calendar) for the packet stream. The ‘MS of Day’ initializes the start time in milliseconds of the day when
the packet stream should start, and ‘MICRO of MS’ initializes the micro-second granularity in the start
time. The next two entries define the step in milliseconds and microseconds between consecutive
packets within the APID or packet stream. The user is provided with the capability of defining a ‘Ramp’
function for the time code if required, and the correction due to Drift. The values that can be entered in
these boxes have been described in earlier sections of this document. OK saves the user-input and
returns the user back to the Packet Definition Menu Panel.

3-70

Figure 3-58. PB5 Time Stamp Definition Menu Panel

The packet length is selected as a fixed value, in accordance to the EDOS-EGS ICD, and the options to
insert ‘checksum’, ‘errors’ and to ‘drop’ selected packets is implemented similar to the Return-Link
Scenario. The ‘drop’ option when selected will display the Event Definition Menu Panel, shown in Figure
3-75. The ‘unit’ option specifies the packets that will be dropped, and the ‘event name’ will alert the
Packet stream that these packets are to be dropped. The user must select ‘Add Spec’, before the OK
and CLOSE sequence to register the event on the Packet Definition Menu display.

For an APID, any number of errors may be introduced. The error definition process is the same as for
the PDS. The AddError is depressed to display the default Error Definition menu panel, similar to that
shown in Figure 3-23, which comes up for the ‘Flip’ error type. In this menu, the user can label the type
of error; select the method by which the error is to be inserted, i.e.,, by flipping bits, or setting bits to
specific values, or by completely dropping packets identified by the APID index or count. Once the error
is defined, the occurrence of this error has to be defined by specifying an event. If specific units are ear-
marked for error insertion, then the ‘Event’ option is selected which displays the Event Listing Menu
Panel, shown in Figure 3-62.

3-71

Figure 3-59. Packet Multiplexer Definition Menu Panel

The AddEvent option displays the Event Definition Menu Panels, described in the previous paragraph,
that allow the user to select the packets for error insertion. The Event name is user selectable and the
occurrence of the event can be either a value or a unit. The Event Spec defines whether a certain range
of units or packets specified by their unit number in the stream, (see Figure 3-26a); or a recurrent pattern
is specified based on the start packet number; how many contiguous packets from this stream; how
many packets are to be skipped; and how many times this pattern is to be repeated, (see Figure 3-25b).
The section on the script descriptions will provide examples of both options. Once the event is defined,
the ‘Add Spec’ button MUST be depressed for the event to be registered, and then the OK and CLOSE
buttons in that order will take the user back to the Event Listing Menu in Figure 3-62. The CLOSE
options will save the selected input and return the user to the Error Definition Menu Panel. The Convey
function is optionally set to convey the error up to the RS encoding process. If this is set, the RS
encoding process will correct the errors inserted in the Packet, and the created test data will not contain
the Packet level errors.

The user has to specify the Virtual Channel ID in the last part of the packet definition. The user can also
specify how many packets have come from Reed-Solomon corrected frames. This will be an entry in the
construction record for the EDS. Once all the entries in the Packet Definition Menu have been entered,
the OK will save the input and CLOSE will return the user back to the EDS Stream Menu Panel. The
same sequence of specifying has to be repeated for any other APIDs in this EDS. If there are two
APIDs and hence the user repeats the Packet Definition for next APID.

3-72

Figure 3-60. APID 320 Packet Definition Menu Panel

3-73

Finally, when all the fields have been defined, the OK and CLOSE returns the user back to the EDS
Stream menu shown in Figure 3-53. When the ‘Script’ button is depressed the Script Window is
displayed, shown in Figure 3-63. The ‘Run’ button will start the creation of the EDS and the Run
Window, shown in Figure 3-64.

Figure 3-61. Event Definition Menu Panel

3-74

Figure 3-62. Event Listing Menu Panel

3-75

Figure 3-63. EDS Script Window

3-76

Figure 3-64. EDS Run Window

3-77

3.5 EDOS PACKET PRODUCTS

The main SCTGEN GUI Menu Panel is displayed, shown in Figure 3-65. The EDOS Packet Products
option is selected and this scenario will display the Input Window Definition Menu Panel, shown in Figure
3-66.

Figure 3-65. SCTGEN GUI Main Menu Panel

3-78

This menu panel will allow the user to select the creation of either an EDOS Data Unit (EDU) Stream or a
Rate Buffered Product (RBP). Once the selection is made the appropriate window panel will be
displayed. The following paragraphs will describe the sequence of steps to create EDOS Data Units and
Rate-Buffered Product File.

Figure 3-66. EDOS Packet Product Definition Input Window

3.6 EDOS DATA UNITS

When the EDUs option is selected the EDOS Input Window Definition Menu Panel, shown in Figure 3-
67, will be displayed. This menu panel will allow the user to enter in the Spacecraft Identifier, and the
VCID. Once this is entered, OK will take the user to the Scenario Definition Menu Panel displayed in
Figure 3-68.

Figure 3-67. EDOS Data Units Input Window

The user can enter the APID, VCID and Packet Length to create the EDOS Data Units. If the user only
wants a single APID stream, only one APID need be selected. Each APID entry needs to be registered
by selecting the addAPID option.

3-79

Figure 3-68. EDOS Data Units Scenario Definition Menu Panel

Once all the APIDs are entered, the view option will display the EDU Stream Menu Panel, shown in
Figure 3-69.

3-80

Figure 3-69. EDOS Data Units Stream Menu Panel

The first block to be defined in this menu panel is the Output block. When selected, this displays the
Output Definition Menu Panel, shown in Figure 3-70. The first fields to be specified are the name of the
stream file, the maximum number of units, which in this case is EDUs, and the option to have ‘w’ access
on the target file. This menu panel also validates the instream that feeds this block. OK will register the
user-inputs and CLOSE will take the user back to the EDU Stream menu panel.

The next block to be specified is the ‘sc42MUX’, which basically allows the user to specify the
multiplexing strategy used to create the EDU output stream. If only one APID had been selected, there
is no multiplexing required. However, the option to have more than one APID is available and thus the
Packet Multiplexer Definition Menu Panel, shown in Figure 3-71, will be displayed. To illustrate the
versatility of the tool, the multiplexed example has been displayed.

As described in the previous sections, the multiplexing is accomplished by one of two ways. The user
can either select ranges for the each APID or select a repeating pattern.

3-81

Figure 3-70. EDOS Data Units Output Definition Menu Panel

Once the pattern is selected and entered, the packet stream display will turn yellow for the defined units.
Once the whole stream multiplexing strategy is complete, close will register the user-input and take the
user back to the EDU Stream Menu Panel shown in Figure 3-69.

3-82

Figure 3-71. Packet (EDU) Multiplexer Menu Panel

Finally, the EDUs have to be defined. The EDU is essentially a packet with an EDOS Service Header.
The 20-byte ESH for each APID is defined by selecting this block on the EDU Stream Menu Panel. This
selection will display the EDU Stream Definition Menu Panel, shown in Figure 3-72.

The first few fields to be specified, namely ‘version’, ‘vcid’, ‘spid’, ‘fill’ and ‘pb5’ are the same as those for
the PDS and EDS Output Definitions. There are two additional fields to be defined in this case, namely
whether the EDU contains a packets from a playback stream or not, and whether the packet is a real-
time downlink or a PB replay. To define the ‘pb5’ field in the header, the Set PB5 Values button is
selected. If this is not selected, a default value will be entered in this field. When this option is selected
the EDU PB5 Definition Menu Panel is displayed, shown in Figure 3-73.

In addition to these fields the user has to specify if the EDU stream came from a VCDU stream that had
breaks, i.e., missing VCDUs to cause a break in the VCDU sequence count and hence drop packets in

3-83

the stream. The user also has to specify if there were RS Uncorrectable CADUs and RS Correctable
CADUs. In the case of the RS Uncorrectable CADUs, it is assumed that the user wants packets from
these CADUs, and hence the ESH header for the packets extracted from CADUs tagged with the RS
Uncorrectable event will have this field set in their respective ESH.

The Event Listing Menu Panel, shown in Figure 3-88 is displayed to enable the user to add and event.
The ‘AddEvent’ option opens the Event Definition Menu Panel. As before all these events have to be
defined and labeled and once again for each of these events the user must select ‘addSpec’ before
exiting the Event Definition Menu Panel.

Figure 3-72. EDU Stream Definition Menu Panel

In the Event Listing Menu Panel, shown in Figure 3-74, the event must be selected before the window is
closed to register the event name in the script.

3-84

3-85

Figure 3-73. EDU PB5 Definition Menu Panel

3-86

Figure 3-74. Event Listing Menu Panel

The selection of the ‘apxxxx’ button on the EDU Stream Menu Panel will display the Packet Definition
Menu Panel in much the same way as they have been for all the scenarios described in this document.
For completeness, the main Packet Definition Menu Panel is displayed in Figure 3-75, and the Error
Listing and Definition is displayed in Figures 3-76 and 3-77.

Once the errors have been defined the Event Definition Menu Panel is displayed, as shown in Figure 3-
78. As before after defining the event the ‘AddSpec’ option has to be selected before the OK button to
enter and register the user input.

3-87

Figure 3-75. Packet Definition Menu Panel

OK and CLOSE will register the user-input and take the user back to the EDU Stream Menu Panel in
Figure 3-69. The ESH for the next APID if any is specified in the same way. Once the ESH for all the
specified APIDs are defined the user is in a position to define the Packet Stream for each APID.

3-88

Figure 3-76. Error Listing Menu Panel

3-89

Figure 3-77. Error Definition Menu Panel

3-90

Figure 3-78. Event Definition Menu Panel

OK and CLOSE will register and take the user back to the menu panel displayed in Figure 3-66.

3-91

Figure 3-79a. EDOS Data Units Script Window Panel

After all the APIDs have been defined, the script button is selected to display the script that has been
created. The display is depicted in Figure 3-79a. The user can briefly examine the script before creating
the EDU Stream. At this point the user can also edit the displayed script to point the target to a null file,
whereby the data is not actually created, but the expected results can be viewed as if the data has been
created. When the ‘run’ option is selected the main SCTGEN Window show the event message that is
displayed in Figure 3-79b.

3-92

Figure 3-79b. EDOS Data Units Run Window (Cont’d)

3-93

3.7 RATE-BUFFERED PRODUCT

When the RBP option is selected the RBP Input Window Definition Menu Panel, shown in Figure 3-80,
will be displayed. The user can enter the Spacecraft ID, Channel or VCID, Application ID and Packet
Length to create the EDOS Data Units that are in the RBP. In the RBP, only one APID has to be defined
for each RBP File. These entries need to be registered by selecting the OK option which will take the
user to the RBP Stream Menu Panel, shown in Figure 3-83. Each RBP file consists of a stream of EDUs
from a single APID. This stream is saved as a RBP file with a unique RBP file-name.

Figure 3-80. RBP Input Window

3-94

Figure 3-81. RBP Stream Menu Panel

The first block to be defined in this menu panel is the Ouptut block. When selected, this displays the
Output Definition Menu Panel, shown in Figure 3-82. The first fields to be specified are the name of the
stream file, the maximum number of units, which in this case is EDUs, and the option to have ‘w’ access
on the target file. In addition, similar to the PDS, EDS, this menu panel allows the specification of the
‘ground’ station, the ‘size’ per file and the creation date. This menu panel also validates the instream
that feeds this block, shown in Figure 3-83. OK will register the user-inputs and CLOSE will take the user
back to the RBP Stream menu panel.

3-95

Figure 3-82. RBP Output Definition Menu Panel

Figure 3-83. RBP Creation Definition Menu Panel

3-96

Figure 3-84. RBP Stream Definition Menu Panel

3-97

Finally, the EDUs within the RBP have to be defined. The EDU is essentially a packet with an EDOS
Service Header. The 20-byte ESH for the APID is defined by selecting this block on the RBP Stream
Menu Panel. This selection will display the RBP Stream Definition Menu Panel, shown in Figure 3-82.

The first few fields to be specified, namely ‘version’, ‘vcid’, ‘spid’, ‘fill’ and ‘pb5’ are the same as those for
the PDS and EDS Output Definitions. The PB5 Value, if not set will carry a default value. When the
option to set is selected, the PB5 Definition Menu Panel is displayed, as shown in Figure 3-85. OK will
register the user input and CLOSE will take the user back to the Stream Definition Menu panel.

Figure 3-85. RBP Stream PB5 Definition Menu Panel

In addition to these fields the user has to specify if the EDU stream came from a VCDU stream that had
breaks, i.e., missing VCDUs to cause a break in the VCDU sequence count and hence drop packets in
the stream. The user also has to specify if there were RS Uncorrectable CADUs and RS Correctable
CADUs. In the case of the RS Uncorrectable CADUs, it is assumed that the user wants packets from
these CADUs, and hence the ESH header for the packets extracted from CADUs tagged with the RS
Uncorrectable event will have this field set in their respective ESH.

When the user selects the option to include packets from ‘RSUncorrectable’, the Event Listing Menu
Panel, as shown in Figure 3-86 will be displayed. The AddEvent option will open up the Event Definition
Menu Panel, as shown in Figure 3-87. The ‘event name’ is entered and the type is selected. When unit

3-98

is specified the range is all that is needed. As before all these events have to be defined and labeled and
once again for each of these events the user must select ‘addSpec’ before exiting the Event Definition
Menu Panel. Similarly, when the ‘RSCorrected Symbol’ is selected, the Event Listing Menu is once
again displayed, and when ‘addEvent’ is selected, the Event Definition Window shown in Figure 3-86 is
displayed. The ‘addSpec’ and OK buttons will register and enter the user inputs.

Figure 3-86. Event Listing Menu Panel

3-99

Figure 3-87. (RSUnc) Event Definition Menu Panel

In both Event Definition, in the Event Listing Menu Panel, shown in Figure 3-86, the event must be
selected before the window is closed to register the event name in the script.

3-100

Figure 3-88. (RSCorr) Event Definition Menu Panel

OK and CLOSE will register the user-input and take the user back to the RBP Stream Menu Panel in
Figure 3-81. Once the ESH for the specified APID is defined the user is in a position to define the
Packet Stream for the APID. The selection of the ‘apxxxx’ button on the EDU Stream Menu Panel will
display the Packet Definition Menu Panel in much the same way as they have been for all the scenarios
described in this document. The main Packet Definition Menu Panel is displayed in Figure 3-89. Once
the ‘version’ and ‘max’ fields are entered the user is now in a position to define the data region in the
packet. Selecting the Packet Data option, the Data Definition Menu Panel, shown in Figure 3-90, is
displayed. The pattern is selected in much the same way as it has been done for the other scenarios
described in the previous sections of this document.

Once the Data region is defined the OK and CLOSE will take the user back to the Packet Definition
Menu Panel. The user can now specify the Secondary Header in the same manner that has been done
for the other scenarios, by selecting the option entering the field values. After verifying the packet
length field, the user is now in a position to insert errors and drop packets from the RBP.

When the Error insertion option is asserted as ‘yes’, the Error Listing Menu Panel, shown in Figure 3-91,
is displayed. The ‘addError’ option, will display the Error Definition Menu Panel, shown in Figure 3-92.
The user can either choose to have all the packets as having the inserted error or select an event as to
which packets should have it.

If the ‘event’ option is selected in the Error Definition, the Event Listing Menu Panel is displayed, Figure
3-93. The ‘addEvent’ option, opens up the Event Definition Menu Panel, Figure 3-94, and the same
sequence of steps as described in the previous paragraphs, are followed to label the event, select the
range options and register the user inputs. After the event is defined and the listing selected to register
the event, the user will select the CLOSE button to get back to the Error Definition Menu Panel. Here
the user will select the type of error, i.e., flip or set etc.,. The position in the packet and the number of

3-101

bits are entered and the OK and CLOSE will take the user back to the Packet Definition Menu Panel in
Figure 3-89.

Figure 3-89. Packet Definition Menu Panel

OK and CLOSE will register and take the user back to the menu panel displayed in Figure 3-81. After
the APID has been defined, the script button is selected to display the script that has been created. The
display is depicted in Figure 3-95. The user can briefly examine the script before creating the RBP.

3-102

Figure 3-90. Packet Data Definition Menu Panel

3-103

Figure 3-91. (Error) Listing Menu Panel

3-104

Figure 3-92. (Error) Definition Menu Panel

3-105

Figure 3-93. (Error) Event Listing Menu Panel

3-106

Figure 3-94. (Error) Event Definition Menu Panel

3-107

Figure 3-95. RBP Script Window Panel

3-108

At this point the user can also edit the displayed script to point the target to a null file, whereby the data
is not actually created, but the expected results can be viewed as if the data has been created. When
the ‘run’ option is selected the main SCTGEN Window show the event message that is displayed in
Figure 3-96.

Figure 3-96. RBP Run Window

3-109

3.8 SCTGEN TUTORIAL

In Figure 3-97, when the Tutorial button is selected the SCTGEN Tutorial Menu Panel shown in Figure 3-
98 is displayed.

Figure 3-97. SCTGEN Main Menu Panel

The SCTGEN Tutorial screen as shown in Figure 3-97 allows the users to familiarize themselves with the
different menu pages in the GUI. At present it is available only for the CADU script generation, and will
be updated to include the other data scenarios.

3-110

Figure 3-98. SCTGEN Tutorial Screen

3.9 SCTGEN HELP

The SCTGEN Help option allows the user to access any of the reference documents that are on the
system. The path to access the help files as with all the other files in the system is configured using the
Configuration Menu Panel which is displayed from the main Menu Panel.

In figure 3-97, when the Config button is selected, the Configuration Menu Panel, shown in Figure 3-99 is
displayed.

Figure 3-99. SCTGEN Configuration Screen

Once the path has been correctly specified, the selection of the Help button on the Main Menu Panel,
shown in Figure 3-97, will display the Help Screen shown in Figure 3-100.

Selecting a topic from the listing on the screen will open a text file containing specific information on the
topic. For example, opening the ‘cadu’ help topic, the user will be able to access the CADU refernce
document which will display all the arguments that may be defined for a CADU stream. It should be
noted that GUI has been developed to adhere to the EOS-AM1 requirements for data generation and
thus all the arguments cannot be specified using the GUI. However, when the script is veiwed using the
script window, any argument may be typed in as long as it conforms to the SCTGEN specified syntax.
Figure 3-101 shows the display when the ‘cadu’ help button has been selected.

3-111

Figure 3-100. SCTGEN Help Screen

3-112

Figure 3-101. SCTGEN CADU Stream Help Screen

3.10 OPERATIONAL TEST DATA GENERATION SCENARIO

Once the user is satisified that the expected results match the devised scenario for testing, the user will
then generate the test data. This is done by targeting a file name and location where this data is to be
stored, or a socket name if the storage device is the TRS. The maximum test data size is storage limited
to 25 gigabytes. The format of the test data is selected by the user to be any one of the formats
described in section 2, i.e., Plain file format, SIM format or any other types of SCTGEN formats
available. The type of data, be it Command Blocks or CADUs, will be designated as the highest layer of
data encapsulation.

In the instance that the test data is CADUs with Version 1 packets, the sequence of test data generation
is as follows:

The user will first select the total number of frames to be generated, for example 100,000. The user will
then assign a specific number of APIDs and VCIDs to these frames, specifiying number of packets per
APID per VCID.

The next step will be to devise the frame multiplexing design to generate the test data, i.e., VCID 1 (10
CADUs) to be followed by VCID 2 and 3 in an alternating pattern, and so on. Within the VCID stream,
the user will devise the multiplexing strategy based on packet rates or user-selected frequencies. Once

3-113

this is done the user will either generate the pseudo-test data file and view the data to selectively insert
errors or insert errors before the first generation cycle and generate the errored test data.

In the former option, once the test data are generated, the user will then devise the frame level
modifications to simulate frame level errors, and packet level errors to simulate packet errors. Once all
the frame and packet level modifications are entered, the user will re-generate the test data. Example
scripts and the data generated using these scripts is appended at the end of this document.

4-1

SECTION 4
USER DETAILED REFERENCE DOCUMENTATION

These following paragraphs contain detailed information on what fields have to be filled in the script and
what values are applicable. Each sub-section id referred to as a document within the paragraph.

4.1 READ-ME

This document set is the reference for Tiger script statements. If you are unfamiliar with Tiger, then see
GLOSSARY.DOC for a definition of terms. For general information on script language syntax, see
SYNTAX.DOC.

To create a new script, you can either use an old one as a template or you can use these documents to
paste together a script. If you are using a windowing system such as X-windows, you can open a
document in a window and copy and paste statements to your script. I have conveniently placed
statement templates at the top of each file to make this task easier. Note that these documents refer to
each other with names in caps, but the actual documents may be in lowercase or may use slightly
different naming conventions.

To begin, open either _CADU.DOC, _V1TF.DOC, or _TC.DOC depending on the type of scenario you
are trying to create. If you are using a special application, then begin by opening the document for that
application. If you are creating a script that is independent of scenario type, such as making generic
frames or packets, then use _CADU.DOC. The scenario type document will tell you which components
are available and which documents you should open to get them.

Regardless of the scenario type, most applications such as tccsds use a general model for script layout.
You will need a main statement, an output statement, and one or more stream statements. The main
statement is described in MAIN.DOC. Some applications do not require a main statement, but it does not
hurt to include it. If it is not used, the application will ignore it. See OUTPUT.DOC for output statement
syntax.

The Tiger library provides foundation components that are available regardless of the scenario type.
There is a document file dedicated to each one.

BITCODE.DOC A stream that performs NRZ and half rate
convolutinal encoding

DEPOT.DOC A stream that reads generic units from a file
DEVICE.DOC Defines input and output devices such as files
ERROR.DOC Components to insert errors into units
EVENT.DOC Components that define when events occur
FORMATS.DOC File formats
FRAME.DOC A generic frame (sync pattern, data, parity)
MUX.DOC A stream that interleaves multiple streams into

one
OUTPUT.DOC Output components
RECORD.DOC A stream that makes user-defined units
REGION.DOC Components to fill units
STREAM.DOC A generic stream definition
TASK.DOC Components to perform tasks on units

4-2

The following components are also available in any CCSDS application:

PACKET.DOC A stream that makes version one source packets
PKTCRATE.DOC A stream that encapsulates units into source

packets
TIME.DOC Additional regions that handle CCSDS time

formats

The CADU scenario makes return link telemetry test files. A typical CADU scenario consists of:

a. One or more packet streams. Each packet stream maps to one APID.
b. One mux for each virtual channel that is collecting packets from more than one packet stream.

The packet mux interleaves the packets into the virtual channel. You do not need a packet mux
if the virtual channel is getting packets from only one packet stream.

c. One or more CADU streams. Each CADU stream maps to one virtual channel. Link each CADU
stream to the corresponding packet mux or single packet stream.

d. One mux to interleave the CADUs from the CADU streams. You do not need a virtual channel
mux if you have only one CADU stream.

e. One output. Link it to the virtual channel mux or to the single CADU stream.

Do NOT create a CADU or packet stream dedicated to making idle units. Every CADU or packet stream
can make idle units as well as regular units, so use existing streams to make idle units.

To write a CADU script, you need the following:

a. This statement:

main c(cadu)

b. One output component. See OUTPUT.DOC.
c. The output needs one or more devices. See DEVICE.DOC.
d. If you are performing NRZ or half rate convolutional encoding, you need a bitcode stream. See

BITCODE.DOC.
e. A mux to interleave the CADU streams. See MUX.DOC.
f. One or more CADU streams per virtual channel. See CADU.DOC.
g. A mux to interleave packets for each CADU stream. See MUX.DOC.
h. One or more packet streams per application id. See PACKET.DOC.

Each document file will refer you to other documents to supply additional components. Open the
document and copy-and-paste the template. Then change the appropriate fields.

The TC scenario makes forward link telecommanding test files. A typical TC scenario consists of:

a. One packet stream.
b. One TC segment stream if you need it. It breaks packets into segments.
c. One TCTF stream. Link it to the packet or TC segment stream.
d. One CLTU stream. Link it to the TCTF stream.
e. One TC physical stream. It adds the idle and acquisition sequence to each CLTU. Link it to the

CLTU stream.
f. One output. Link it to the TC physical stream.

You may create more than one of any of the above streams except output. If you do, then use a mux to
interleave their units before you pipe them into the next stream.

4-3

To write a TC script, you need the following:

a. This statement:

main c(tc)

b. One output component. See OUTPUT.DOC.
c. The output needs one or more devices. See DEVICE.DOC.
d. One TC physical stream. See TCPHY.DOC.
e. One CLTU stream. See CLTU.DOC.
f. One TCTF stream. See TCTF.DOC.
g. Maybe one TC segment stream. See TCSEG.DOC.
h. One packet stream. Make sure you set the tc(1) argument. See PACKET.DOC.

Each document file will refer you to other documents to supply additional components. Open the
document and copy-and-paste the template. Then change the appropriate fields.

4.2 SYNTAX

The script defines which components to build and how to connect them. It contains statements. A
statement consists of a path followed by arguments. The following line is a statement example:

stream.pkt.a10 appid(10) length(256) max(1000) idleEvent(Idle)

The first part, “stream.pkt.a10,” is the path and defines a component. In the example, the component is
the packet stream named “a10.” Paths are hierarchial. The dot separates the levels in the hierarchy.

The fields length(256), max(1000), and idleEvent(Idle) are the arguments. The contents within the
parentheses are the argument values.

White space (spaces and tabs) separate paths and arguments; commas do not.

In general, the programs that interpret scripts are unforgiving about mistakes. If they do not understand
something, they typically skip it without printing an error. Consequently, do not use white space or
punctuation symbols in paths, arguments, or values unless specifically allowed because it could confuse
the parser.

Here are general syntax rules:

a. Case is significant. “length(256)” is not the same as “LENGTH(256).”
b. You may write a statement over more than one line by using the continuation character. If the

last character (excluding white space) in a line is the “-“ character, then the parser will join it
with the next non-comment line.

stream.pkt.a10 appid(10) - length(256) max(1000) - idleEvent(Idle)

c. If the first non-white space character in a line is the “#” character, then the parser treats it as a
comment line. It ignores blank lines and comment lines. You may not attach comments to
statements.

d. Most statements may appear in any order in a script. A few are order dependent. The
documention identifies which are order sensitive. The components that the statements define
may appear in any order.

e. White space separates arguments from the path and each other. Do not insert white space in
paths and arguments.

f. When identifying an argument value, the parser uses “(“ and “)” as delimiters. Some arguments
permit punctuation and white space in the value, particularly string values. This is the only
exception to the rule.

g. The parser does not identify invalid arguments. It uses what it needs and ignores the rest. This
means if you mispell or use the wrong case for an optional argument, the parser will not tell you!
It will ignore the argument and use this default value. (Someday we will change this.)

4-4

h. The last statement in a script may be: *end If you include this optional statement, then the parser
treats all statements following it as comments.

The component definitions use the following conventions:

a. The “<” and “>” delimit a string field for which you substitute a name.
b. argument(n) Substitute a decimal value (unsigned unless specified) for the “n.” For example, use

length(100) for length(n).
c. argument(n:0) The value after the colon is the default value if you omit the argument.
d. argument(1or0) The value may be 1 or 0, which means on or off, true or false.
e. argument(0xnn) The value is in hexadecimal format. For example, fill(0xa1) is a valid substitute

for fill(0xnn). If an argument expects a hexadecimal value, then you may omit the “0x” prefix, but
it is best to include it for clarity.

f. argument© The value is a single character usually selected from a list of characters.

4.3 GLOSSARY

UNIT
A unit is a block of data and the base class for all unit types. Packets, frames, CADUs, V1TFs, CLTUs,
et. al. are all units. Tiger’s core components all handle units and are unaware of a specific unit type. For
example, a mux stream does not know if it is interleaving packets or frames. This means a script-writer
could design scripts with unusual linkages. For example, it is possible to link a CADU stream into another
CADU stream so that the second CADU stream is putting CADUs into its data zone rather than packets.

IDLE UNIT
An idle unit is a fill unit. Some types of streams can make idle units, such as packets, CADUs, and
V1TFs. Others cannot. For example, no telecommanding stream makes idle units. Some idle units have
unit id zero.

UNIT ID
Every stream assigns a unit id to every unit that it makes or processes. With one exception, unit ids
begin with one and increment upwards, and no two units within a stream have the same unit id.
Sometimes a stream will create units with unit id of zero. Unit id zero is always an idle unit, but not all
idles have unit id zero. More than one idle unit may have unit id zero.

STREAM
A stream is the general name for a special component that makes or processes units. (Although the
output component handles units, it is not a stream.) Most streams make units, but there are also streams
to read units from files. The mux stream interleaves units from multiple streams, and the record stream
lets user construct custom units. Streams are linked together in scripts, and, like units, a stream is
unaware of the specific stream type to which it is linked. This means a script-writer could design scripts
with unusual stream linkages.

OUTPUT
An output is the general name for a special component that gets units from a stream and uses them to
write data to one or more output devices. A script will usually have only one output component.

DEVICE
A device is an input or output port. It cannot be both. It is often a disk file, but it can be a network
connection, a tape, or any other custom application that derives from the generic device. Outputs write to
devices. Streams read from devices. Only one component can use a device; they are not shareable.

4-5

REGION
A region is an area within a unit that is defined by a name, a start bit, and a bit length. For example, the
version one source packet unit has a data region and an optional secondary header region. The Tiger
library provides a palette of patterns from which the script-writer can choose to fill regions. Many
application define additional patterns.

TASK
A task is a special operation that streams perform on units. For example, you can use a task to deposit a
sequence number anywhere in a unit. Tasks are powerful tools that let you customize units.

ERROR
An error is a special type of task that introduces errors into units. You use an error to simulate instrument
and transmission errors.

EVENT
An event tells a stream or output when and how to do something. It associates unit ids with both a
number and a true or false state. For example, unit id ten could have value 151 and be true. A common
use would be with errors. The event tells the stream to which units it should apply a particular error.

EXPECTED RESULTS FILE
The expected results file is a text file that is a signature of the output test data. There is one expected
results file created with every script execution. It contains unit counts, unit maps, and records of errors
and gaps.

SCRIPT
The script is a text file that a Tiger application reads to produce test data. The file contains Tiger
statements.

4.4 MAIN
The main statement defines the scenario type. If you create a scenario that only uses core components
or core components and packets, then use the cadu scenario.

main c(type)

c(type)
The scenario type. Default=cadu.
cadu= CADU scenario.
v1tf= version one transfer frame scenario.
tc= telecommanding scenario.

4.5 BITCODE STREAM

BIT ENCODER STREAM
stream.bitcode.<name> -

inStream(sname) -
max(n:0) -
leader(n:0) lpattern(n:0x00) -
trailer(n:4) tpattern(n:0x00) -
halfConv(1or0:1) -

4-6

nrz(c:L) nrzStart(1or0:0) nrzDecode(1or0:0) -
drop(ename) ERdrop(1or0:1) ERerrors(1or0:1)

This stream can perform several encoding algorithms on units from an input
stream. These include:
o Half rate convolutional encoding
o NRZ encoding (L, S, or M)

In practice, this stream gets frames (CADUs, V1TFs, or generic frames),
encodes them, and sends them to an output. The stream encodes across unit
boundaries, so the integrity of the input frame is destroyed. You should have
only one bitcode stream in a script. If you choose to do half rate
convolutional encoding, which always follows NRZ encoding if it is performed,
then the output unit length is twice the input unit length. If you only do NRZ
encoding, then the output unit length is the input unit length.

You have the option of generating preamble and trailer bit sequences for the
session. The stream does not encode either sequence. The stream sends the
preamble sequence in a single unit, and it is the first unit out of the
stream. It sends the trailer sequence in a single unit, and it is the last
unit out of the stream. If you must produce fixed length output units and you
use either the preamble or trailer, then set their lengths to the length of
the output unit.

You should always use the max(n) argument with this stream if you want to
produce a trailer unit. If you omit the max(n) argument, then it is likely
that this stream will not make a trailer unit even if you specify one. That is
because this stream uses the max(n) argument to tell it when to make a
trailer. The only time it will make a trailer unit without max(n) is when its
input stream stops providing units for it to encode.

Even if you specify the max(n) argument, it is still possible that this stream
will not make a trailer unit. This happens if the output stops before the bit
encoder stream has reached is max(n) value.

Remember that the last unit may be a short trailer unit when you examine the
length of your output file. It may not be as large as you expect for this
reason.

The best solution is to always specify max(n) and to omit the output’s max(n)
if possible. If that is not possible, then choose the output’s max(n) so that
the output does not terminate before the bit encoder has produced the trailer.
You may need to dry run the script to determine those numbers.

The stream type must be “bitcode.” You may choose any name for <name> provided
it is different from any other stream name.

This stream may perform tasks and errors. It performs all pre-encoding tasks
and errors before it convolutional encodes but AFTER any NRZ encoding. It does
post-encoding tasks and after after ALL encoding. See TASKS.DOC for statement
syntax.

inStream(sname)
Input stream name. Required.

max(n:0)
The stream will stop producing units when the unit id exceeds the specified

4-7

id. default=0 (unlimited). Not required. If omitted, there is no limit. You
must set this argument if you want to make a trailer unit. See trailer(n) for
more information.

halfConv(1or0:1)
1= enable half rate convolutional encoding. Default=1. When enabled, the
output unit size is twice the size of the input unit.

leader(n:0)
Number of bytes of preamble. Default=0. When active, the first unit this
stream produces is a preamble unit. The data consists of a unencoded,
repeating pattern byte, which you may specify in the lpattern() argument.

lpattern(n:0x0)
Pattern byte used in the preamble if it exists. Default=0. The stream does not
encode the preamble.

trailer(n:4)
Number of bytes of trailer. Default=4 if half rate convolutional encoding is
enabled. Default=0 if half rate convolutional encoding is disabled. When
active, the last unit this stream produces is a trailer unit. The data
consists of a repeating pattern byte, which you may specify in the tpattern()
argument. The stream does not NRZ-encode the trailer, but it does perform half
rate convolutional encoding on it. The trailer length should be non-zero when
doing half rate convolutional encoding to force all residue bits out of the
encoder’s working register.

tpattern(n:0x0)
Pattern byte used in the trailer if it exists. Default=0.

nrz(c:L)
L= NRZ-L, which is no NRZ encoding and is the default. S= NRZ-S. M= NRZ-M.

nrzStart(1or0:0)
The start bit when NRZ encoding. Default=0. Toggling this bit inverts the data.

nrzDecode(1or0:0)
0= NRZ-encode units. 1= decode. Default=0. The only time you might want to
decode units is if you must read and interpret a file of NRZ-M or NRZ-S
encoded units.

See STREAM.DOC for undefined arguments.

4.6 CADU STREAM
This stream makes CADUs (frames). It may only be used in the CADU scenario. See STREAM.DOC for
general stream information.

The CADU stream can also read CADUs from a file instead of making them. You may also use the depot
stream to read CADUs from a file. See DEPOT.DOC.

The stream type must be “cadu.” You may choose any name for <name> provided it is different from any
other stream name. The usual practice is to use the virtual channel id in the stream name.

stream.cadu.<name> service© length(n) vcid(n) spid(n) sync(1or0:1) -

frameSync(0xnnnnnnnn:0x1acffc1d) syncBytes(n:4) max(n:0) -
replay(ename:0) hdrErrControl(1or0:0) fill(0xnn:0xc9) -

4-8

insertZone(n:0) ocf(1or0:0) insertPDUheader(1or0:1) -
PDUheaderBitLength(n) PNencode(1or0:0) RSencode(1or0:0) -
RSinterleave(n:4) RSdual(1or0:1) RScodeLength(n:255) -
RSempty(1or0:0) crc(1or0) CRCstart(0xnnnn:0xffff) -
CRCempty(1or0:0) CRCincludeSync(1or0:0) invert(c:N) -
invertEvent(ename) ERerrors(1or0:1) ERgaps(1or0:1) -
ERdrop(1or0:1) device(dname) fileType© stepSize(n:1) -
startSequence(n:0) skipZero(1or0:0) drop(ename) -
idleEvent(ename) idleSeq(1or0:0) reverse(1or0:0)

stream.cadu.<name>.region.data ...
stream.cadu.<name>.region.insertZone ...
stream.cadu.<name>.region.ocf ...

The data region is the CADU’s data zone. The data region statement is required. The insertZone region
statement is required when insertZone(n) is non-zero. It may not be empty (type E). The ocf region
statement is required when ocf(1) is set. The region is four bytes long, and it may not be empty (type E).
See REGION.DOC for region statement syntax.

This stream may perform tasks. See TASK.DOC. It applies “task” to units before error insertion and
encoding, and “xtask” to units after error insertion and encoding.

stream.cadu.<name>.task.<task> event(ename) ...
stream.cadu.<name>.xtask.<task> event(ename) ...

The following statement shows the mandatory arguments when this stream reads a CADU file and does
not make CADUs. When the CADU stream reads CADUs from a file, it ignores all region statements.
However, there may be other mandatory arguments if this stream makes idle CADUs.

stream.cadu.<name> fileType© device(name) length(n)

service©
P= path, encapsulation; V= VCA, VCDU; B= bitstream. Required.

length(n)
Frame length in bytes. Required if crc(1). Min=128. If RSencode(1), the stream computes the frame

length and ignores this argument.

vcid(n)
Virtual channel id. Required. Range=0-63.

spid(n)
Spacecraft id. Required. Range=0-255.

sync(1or0:1)
1= prepend frame with sync pattern. Default=1. 0= no sync pattern.

frameSync(0xnnnnnnnn:0x1acffc1d)

Frame sync pattern. Default=0x1acffc1d. The stream puts the four-byte sync pattern before each frame.

syncBytes(n:4)
Number of bytes in sync pattern. Default=4. Must be 0 or 4.

replay(ename:0)
0= real-time, 1= playback. Default=0.
If not 0 or 1, then the argument is a boolean event name. See EVENT.DOC. The stream sets the replay

flag to on (playback) when the event is true and off (real-time) otherwise.

hdrErrControl(1or0:0)

4-9

1= encode the VCDU header. 0= no encoding. Default=0.

fill(0xnn:0xc9)
Fill byte for idle frames if this stream makes them. Default=0xc9.

insertZone(n:0)
Size of insert zone in bytes. 0= do not use insert zone. Default=0. If you define an insert zone, you must

define an insert zone region.

ocf(1or0:0)
Operational Control Field present. Default=0. If you define an OCF, you must define an OCF region. This

field is also known as the CLCW.

insertPDUheader(1or0:1)
Meaningful only for services B and P. Default=1.
1= The CADU stream computes the PDU header and inserts it in each CADU. The data region does not
include the PDU header.

0= The CADU stream does not compute the PDU header, and the data region includes the PDU header
field. You should do this only if the region loader inserts the PDU header such as a raw file might.

PDUheaderBitLength(n)

Number of “good” bitstream data bits. Meaningful for service(B) [bitstream] only and required�if
insertPDUheader(1). The stream uses this number to construct the B_PDU header. if n=0, it deposits the
value 16383 (0x3fff) into the header. If n=16383, it deposits 16383. Otherwise, it deposits the value n-1.
Note that this value is independent of the data region contents. Furthermore, when the stream fills the
data region, it fills the entire region and ignores this value. Also note that it is constant for the entire
session. (If you need to vary the bitstream B_PDU length, then use tasks or errors. See TASK.DOC or
ERROR.DOC.)

PNencode(1or0:0)

Bit transition density option. Also called pseudo-noise encoding. Default=0. 0= do not encode. 1= encode
the CADU. (polynomial: 8-7-5-3-0)

RSencode(1or0:0)

1= Reed-Solomon encoding enabled for frame. Default=0. When on, the stream computes the frame
length and overrides the length(n) argument. The following Reed-Solomon arguments are meaningful
only when RSencode(1) is set.

RSinterleave(n:4)
Reed-Solomon interleave. Range=1-32. Default=4.

RSdual(1or0:1)
1= assume dual mode. Default=1.

RScodeLength(n:255)

Reed-Solomon codeword length in bytes. Default=255. Range=33-255. If your CADUs have “virtual fill,”
then subtract the virtual fill count from 255 and set RScodeLength to that value. For example, for RS
interleave 1 the virtual fill is three bytes, so set RScodeLength(252).

RSempty(1or0:0)

1= leave space in unit for Reed-Solomon encoding but skip encoding. Default=0. The stream fills the
parity area with zeroes. You should set RSempty(1) if the transmitter hardware does RS encoding or if
you are only doing a dry run of the script.

crc(1or0)
1= CRC16 encoding enabled for frame. If RSencode(0), then crc is on by default. If REencode(1), then

crc is off by default.

4-10

CRCstart(0xnnnn:0xffff)
If crc(1), this sets the initial CRC16 encoding value. Default=0xffff.

CRCempty(1or0:0)
1= leave space in unit for CRC encoding but skip encoding. Default=0.

CRCincludeSync(1or0:0)
1= include sync pattern in CRC encoding. Default=0.

invert(c:N)

Invert option. N=none. S=sync pattern only. B=entire frame excluding sync pattern. A=entire frame
including sync pattern. Default=none.

invertEvent(ename)

Identifies which frames to invert. Required when invert option is not N. invertEvent(1) means invert
every unit. Otherwise it specifies a boolean event. See EVENT.DOC.

idleEvent(ename)
Causes this stream to create idle frames for specified unit ids. The ename value is a boolean event

name. See EVENT.DOC.

idleSeq(1or0:0)

This argument tells the stream if it should insert a sequence number in any idle CADUs that it makes. 0=
put zero in the sequence field of all idles. 1= put a sequence counter in the sequence field of all idles.
Since all idle CADUs are vc 64, the counter is independent of any other sequence counter. Default=0.

reverse(1or0:0)
1= The stream reverses the bit order in every frame. It is the last operation that it performs. 0= forward

order frames. Default=0.

See STREAM.DOC for undefined arguments.

4-11

4.7 CLTU STREAM
This stream makes CLTUs from TCTFs. It does not put idle or acquisition sequences in CLTUs. It may
be used in the TC scenario only. See STREAM.DOC for general stream information.

This stream can read CLTUs from a file instead of making them. You may also use the depot stream to
read CLTUs from a file. See DEPOT.DOC. If you use a plain input unit file, then you must supply the
sizeBits(n) argument because all CLTUs in a plain unit file must be the same length. This stream cannot
read CLTUs from that have idle or acquisition sequences.

The stream type must be “cltu.” You may choose any name for <name> provided it is different from any
other stream name.

stream.cltu.<name> inStream(sname) codeblockLength(n:8) max(n:0) sizeBits(n) -

ERerrors(1or0:1) ERgaps(1or0:1) drop(ename) ERdrop(1or0:1) -
device(dlabel) fileType©

This stream may perform tasks. See TASKS. It applies “task” to units before error insertion and “xtask”
to units after error insertion.

stream.cltu.<name>.task.<task> event(ename) ...
stream.cltu.<name>.xtask.<task> event(ename) ...

inStream(sname)

Input stream name. This should be a stream that provides TCTFs. Required unless reading from a file.

codeblockLength(n:8)
Code block length in bytes. Default=8. Range=5-8.

See STREAM.DOC for undefined arguments.

4.8 DEPOT: GENERIC UNIT READER

This stream reads input units from a device using fancy or plain format. See FORMATS.DOC. Many
streams are capable of reading input unit files on their own. This stream may replace most of them. It
reads generic units. See STREAM.DOC for general stream information.

stream.depot.<name> length(n) device(dname) fileType© max(n:0) sizeBits(n) -

ERerrors(1or0:1) ERdrop(1or0:1) drop(ename)

This stream may perform tasks. See TASK.DOC. It applies “task” to units before error insertion and
encoding, and “xtask” to units after error insertion and encoding.

stream.depot.<name>.task.<task> event(ename) ...
stream.depot.<name>.xtask.<task> event(ename) ...

fileType©
Device file type. P=plain unit file. F=fancy unit file. Required.

device(dname)

Device name of device from which this stream will read input units. See DEVICE.DOC. Required.

length(n)
Unit size in bytes. Either length(n) or sizeBits(n) is required.

sizeBits(n)
Unit size in bits. Either length(n) or sizeBits(n) is required.

4-12

max(n:0)

The stream will stop producing units when the unit id exceeds the specified id. default=0 (unlimited). Not
required. If omitted, there is no limit. This argument may also be called maxUnitId(n).

ERerrors(1or0:1)
1= put unit error information into the expected results file. default=1.

ERdrop(1or0:1)
1= identify discarded units in the expected results file. default=1.

drop(ename)

This argument causes the stream to discard units based upon the event. See EVENT.DOC. If omitted,
the stream does not drop any units. Not required. If present, the event must exist in the script.

See STREAM.DOC for undefined arguments.

4.9 DEVICES

A device defines a specific input or output target. It is often a file, but it could be a port, a tape, or null.
Other components, such as streams and outputs, link to devices through the device name for either input
or output. A component exclusively owns a device. Devices are never shared.

The general format for a device is:

device.<type>.<dname> <arguments>

Currently there are only two device types: null and file. Other applications may define additional types.
The file device type is usually used for devices such as disk files. The null device type is a pseudo-port
because all output is discarded and all input is simulated. It is useful when testing a new script.

You choose the device name (dname). It must be unique among devices. Components reference the
device name to link to the device.

FILE DEVICE
device.file.<dname> name(filename) access©

name(filename)
The complete file name string. Required.

access©
Access mode. r= read, w= write. Required.

NULL DEVICE
When used as an output device (access(w)), the script discards all output but still reports on the quantity
of data discarded. When used as an input device (access®), the script simulates input but does not
actually read a file. The script needs the file length to determine when to stop processing input.

device.null.<dname> access© length(n)

access©
Access mode. r= read, w= write. Required.

length(n)
Number of bytes in an input device. Required if access®.

4-13

4.10 ERRORS

An error statement instructs a stream to introduce errors into units. Error statements are always attached
to streams. Each error requires an event to determine when the stream should apply an error. The error
types are:

 flip invert a consecutive string of bits.
 set deposit a 1-32 bit value somewhere in a unit.
 add add a 1-32 bit value somewhere in a unit.
 flipmask flip up to 32 bits corresponding to “on” bits in a 32-bit mask.
 resize truncate or extend a unit

The general formats are:

stream.<stype>.<stream>.error.flip convey(1or0:0) label(text) -

event(ename) startbit(n) bits(n)

stream.<stype>.<stream>.error.set convey(1or0:0) label(text) -

event(ename) startbit(n) bits(n) v(n)

stream.<stype>.<stream>.error.add convey(1or0:0) label(text) -

event(ename) startbit(n) bits(n) v(n)

stream.<stype>.<stream>.error.flipmask convey(1or0:0) label(text) -

event(ename) startbit(n) bits(n) emask(0xnnnnnnnn)

stream.<stype>.<stream>.error.resize convey(1or0:0) label(text) -

event(ename) chop(1or0) fill(0xnn:0) v(n) bits(1or0:0) abs(1or0:0)

The <stype> and <stream> paths are respectively the type and name of the stream to which the error is
attached. The resize error is different from the other types, so its description follows the following section.

label(text)
This text is printed in the expected results file when the stream applies the error. It helps to identify

errors. Choose descriptive text. Required.

event(ename)

This argument links the error to an event, which tells the stream which units will have the error applied to
them. The ename value is an event name. See EVENT.DOC. If you specify event(1), then the stream
applies the error to every unit.

startbit(n)

The startbit and bits arguments define a location in a unit where the error is applied. Startbit may be
positive or negative. When zero or positive, the stream measures the location from the start of the unit
with the first bit being bit zero. The maximum value for startbit is the unit size in bits minus one. When
starbit is negative, the stream measures the location from the end of the unit. For example, startbit(-1)
points to the last bit, and startbit(-16) points to 16 bits from the unit end. Required.

bits(n)

The number of bis in the error field. See startbit(n) description. For flip, it may be as large as the unit size
in bits minus startbit(n). If you set bits(0), the stream inverts all bits in the unit starting with startbit(n) to
the end of the unit. For all other error types, the range is 1 to 32 bits. Required.

convey(1or0:0)

4-14

1= The error conveys to all receiving streams. A receiving stream will mark a unit as having errors if any
part of it contains fragments from a unit with conveyed errors. If a stream is encoding a unit, the error is
applied AFTER the encoding is done. When using resize, you should almost always set convey(1).

0= The stream hides the error from a receiving stream. Default=0. If a stream is encoding a unit, the
error is applied BEFORE the encoding is done. See the discussion at the end of this section for more
information.

v(n)

This is a value that is added or deposited into a unit. If omitted, the add and set errors use the value
associated with the event. This argument may also be specified as value(n).

emask(0xnnnnnnnn)
This mask identifies which bits to flip in the field. “On” bits are flipped. Required.

stream.<stype>.<name>.error.resize convey(1or0:0) label(text) event(ename) -

chop(1or0) fill(0xnn:0) v(n) bits(1or0:0) abs(1or0:0)

label(text)
This text is printed in the expected results file when the stream applies the error. It helps to identify

errors. Choose descriptive text. Required.

event(ename)

This argument links the error to an event, which tells the stream which units will have the error applied to
them. The ename value is an event name. See EVENT.DOC. If you specify event(1), then the stream
applies the error to every unit.

convey(1or0:0)

1= The error conveys to all receiving streams. See explanation above. You should almost always set
convey(1) for resize because you almost always want to do encoding, such as CRC or RS, before you
truncate or extend a unit. Doing it before encoding may cause unexpected results and even crashes for
certain unit types such as frames.

0= Truncate before encoding. The error is hidden from subsequent streams. Default=0.

v(n)

The meaning of this value depends on other arguments. It is either the number of bits/bytes to extend or
truncate a unit, or it is the desired size of the resized unit. If omitted, resize gets the value from the
associated event.

chop(1or0)

1= truncate the unit. 0= extend the unit. You cannot do both with the same error. Required.

fill(0xnn:0)
When chop(0) and you are extending a unit, this is the fill byte for the extended area.

bits(1or0:0)
Truncate by bits or bytes. 1= v(n) is in bits. 0= v(n) is bytes. Default=0.

abs(1or0:0)

This flag tells the stream if v(n) is the total number of bits/bytes in the final unit or if v(n) is the number of
bits/bytes to truncate or extend the unit. Default=0. 0= v(n) is the number of bits or bytes to truncate or
extend the unit. 1= v(n) is the target total number of bits or bytes in the unit.

CONVEYING ERRORS

4-15

When you set convey(1) in an error statement, the stream applies the error after it has done any
encoding. Furthermore, the stream propagates the error to every receiving stream. Each receiving
stream applies the error after it has constructed its own unit and after it has done any encoding.

For example, suppose a script has a packet stream and a frame stream. The frame stream is making
frames from the packets it gets from the packet stream. If we introduce an error to a packet and we set
convey(1) in the packet stream, then the packet error is conveyed to the frame stream. The frame
stream will build a frame from a clean, error-free copy of our bad packet. It will then encode the clean
frame, and only then will it apply the packet error. This means if the frame stream is doing CRC or Reed-
Solomon encoding, the frame will have a CRC or Reed-Solomon error because the error is applied after
the encoding.

When you set convey(0), the stream applies the error before it does any encoding. Furthermore, it hides
the error from any receiving stream. If we set convey(0) in our frame and packet example, then the
frame stream would encode the frame over the top of the bad packet. This means if it’s doing CRC or
Reed-Solomon encoding, the frame will not have a CRC or Reed-Solomon error. In this case, convey(0)
simulates an instrument error rather than a transmission error.

Usually when you put errors into packets, you are testing equipment to see how it handles particular
packet field errors. Under these circumstances, you should probably set convey(0) in your packet
streams. If you set convey(1) and the target equipment has Reed-Solomon correction hardware, then
that hardware will most likely correct your errors at the frame level, and your carefully planned errors will
be lost. If you want to test the Reed-Solomon correction hardware, it is best to insert the errors in the
frame stream and to set convey(1) to ensure the errors are applied after encoding.

4.11 EVENTS
An event causes something to happen for a specific unit id. For example, a packet stream uses an event
to determine which packets should have errors. An event also associates a value with a unit id. For
example, a packet stream, which makes variable length packets, uses an event to determine the length
of each packet. More than one component may use the same event.

An event is a collection of event statements with the same event name and type. The general format is:

event.<type>.<ename> default(n)
event.<type>.<ename>.range uid0(n) uid1(n) v(n)
event.<type>.<ename>.recur start(n) repeat(n:0) skip(n:0) span(n:0) -

occur(n:0) v(n)

The general format shows three event statements, but not all are required. An event may have zero or
more range or recur statements in any combination. It may or may not have one default statement, which
is determined by the event type and context. You choose the event name (ename). It must be unique
among events. Components reference the event name to link to the event. For type, use “value” or
“unit.”

There are two event types: value and unit. A value event has both a true/false state and a numeric value
associated with every unit id. A unit event (also called a boolean event) has a true/false state for every
unit id and only a trivial unit id value (1 for true and 0 for false). Streams ask events to return either a
value or a true/false state for each unit id depending on the context. For example, a packet stream might
need to know the packet length for packet 10. It would ask a value event to return the value for unit id
10, which it would use as the packet length. A frame stream might need to know if it should make frame
60 as an idle frame. It would ask a unit event or a value event to return the true/false state for unit id 60.
Typically, there is a stream statement argument that links a stream action to an event name. For
example, the packet stream has varLenEvent(ename) and the frame stream has idle(ename) as
statement arguments. The “ename” value is an event name, which points to a particular event in the
script.

Here is an example of a value event:

event.value.ev1.range uid0(1) uid1(10) v(1)
event.value.ev1.range uid0(100) uid1(150) v(2)

4-16

event.value.ev1.recur start(1) skip(1) repeat(0) v(5)
event.value.ev1 default(13)

The event is referenced by the name “ev1.” Unit ids 1-10 have value 1, unit ids 100-150 have value 2,
odd unit ids not in the ranges have value 5, and all others have value 13. Unit ids 1-10, 100-150, and all
odd ids are true, and the rest are false.

Here is an example of a unit (boolean) event:

event.unit.ev1.range uid0(1) uid1(10)
event.unit.ev1.range uid0(100) uid1(150)
event.unit.ev1.recur start(1) skip(1) repeat(0)

In the example, unit id 1-10, 100-150, and all odd unit ids are true. The rest are false. All true units have
value 1, and the rest have value 0. When an argument wants a unit event, you may also point it to a
value event. The stream will ignore the values and only look at the true or false state.

RECURRENT PATTERN STATEMENT
The recur statement defines a repeating pattern of units. For example, you would use the recur
statement to give every odd unit id a true state.

A recurrent pattern might look like this: tttt__tttt__tttt__tttt__ In this example, unit ids 1-4, 7-10, 13-16,
and 19-22 are true, and all others are false. For this pattern example, the script line would be either of
the follow two:

event.unit.<name>.recur start(1) repeat(3) occur(4) skip(2)
event.unit.<name>.recur start(1) repeat(3) occur(4) span(6)

or one of the following for a value event with a true value=25 and false=0:

event.value.<name> default(0)
event.value.<name>.recur start(1) repeat(3) occur(4) skip(2) v(25)
event.value.<name>.recur start(1) repeat(3) occur(4) span(6) v(25)

The complete format for a recurrent event state is:

event.<type>.<name>.recur start(n) repeat(n:0) skip(n:0) span(n:0) -

occur(n:0) v(n)

start(n)
The starting unit id. Required. Minimum=1.

repeat(n:0)
Number of times to repeat the true state in a group. It is the number of consecutive trues minus one.

default=0.

skip(n:0)
Number of false values between groups of true values. Default=0.

span(n:0)

Number of units in pattern. span=repeat+skip+1. If span(n) is present, skip(n) is ignored and computed
as span-repeat-1. Default=0 (span is computed.) If present, the minimum value is repeat+1. In practice,
it is often much simpler to supply span(n) then to compute skip(n).

occur(n:0)
Number of occurrences of the pattern. default=0, which is infinite.

v(n)
Value associated with the state. Required for value events.

4-17

RANGE STATEMENT
A range defines an interval by a start and end unit id. A unit id is true if it lies within the interval, including
the end points.

event.unit.<name>.range uid0(n) uid1(n)
event.value.<name>.range uid0(n) uid1(n) v(n)

uid0(n)
First unit id of range. minimum=1. Required.

uid1(n)
Last unit id of range. minimum=uid(0). Required.

v(n)
Value associated with the state. Required for value events.

To specify the false value for a value event, you must specify the default(n) argument as in the following
example:

event.value.ev1.range uid0(1) uid1(10) v(1)
event.value.ev1.range uid0(100) uid1(150) v(2)
event.value.ev1.recur start(1) skip(1) repeat(0) v(5)
event.value.ev1 default(13)

The default argument is not always required; it depends on the usage. For example, if the event is used
to determine idle units, then default(n) is not used because the stream creates idles only for trues.
However, if the same event is used for packet lengths, then it is required because the stream uses the
event for all unit ids, and the true or false state is not important. There is no default for default(n).

Different event states may have overlapping unit ids. To resolve an event (especially when the states
have values and overlapping unit ids), Tiger always searches through all range event states before it
searches through the recurrent event states, regardless of the listed order. If there is more than one
event state of the same type (range or recur), then Tiger searches through them in the order they are
listed in the script. Tiger stops searching as soon as it finds a true. For example,

event.value.evx.recur start(1) skip(1) v(3)
event.value.evx.range uid0(1) uid1(20) v(1)
event.value.evx.range uid0(15) uid1(20) v(2)

The value for unit id 17 is 1, despite the fact that all three states reference id=17, because it satisfies the
first listed range event.

4.12 FORMATS

PLAIN FILE FORMAT
The plain file format is a continuous stream of units without headers, trailers, or markers of any kind. The
file is binary and not text. The plain output component writes units to the file in the order that the units
are produced.

FANCY FILE FORMAT
The fancy file format is a Tiger invention. The file has a header, and each unit has one too. The file is
binary and not text. Like the plain format, it contains a continuous stream of units but with annotation.

4-18

This format is most suitable for making intermediate data files because no pertinent information is lost.
For example, one could run a script that creates a fancy file of packets. In the next stage, one could run
a frame generation script that uses the packet file without information loss.

It is possible to use a plain file for staging but with limitations. Plain files do not contain unit information,
so, for example, it is impossible to tell which packets have errors in a plain file. This means it is
impossible to convey errors to a frame stream from a plain packet file.

Furthermore, the plain unit file must contain fixed size units. Tiger cannot read a plain unit file with
variable size units because it does not know where the units begin and end. You must use a fancy file
format to create intermediate files for variable size units.

File Header
The fancy file header contains a fixed length primary header and an optional secondary header. The
tccsds program does not create or use the secondary header, but special applications or later versions
may use it. Applications should not assume the secondary header is empty but instead should use the
secondary header length field, which is in the primary header, to find the start of data.

If you are using the files output component with the fancy format, note the that fancy header is placed on
the first file only and not every subsequent file. (The files component splits a large output file into a
collection of smaller files.) The files component does not split units between files.

Primary Header
The primary header is 20 bytes. Each field is four bytes long.

version The fancy file format version number. This
document describes version 1. Applications should
check the version number and may abort or warn
the user if the version is greater than they expect.

fancyVerification This field contains the pattern 0xa495.
Applications should use it to verify that the data
file is truly a fancy format file.

secondaryHeaderLength The secondary header length in bytes.
secondaryAnnotationLength Unit secondary annotation length in bytes.
annotationLength Unit primary annotation length in bytes.

The units immediately follow the file header. Each unit also has a header (annotation). As with the file
header, this is a fixed length primary annotation and an optional secondary annotation. The secondary
annotation length does not vary from unit to unit, and its length is establish in the file’s primary header.
The tccsds program does not create or use the secondary annotation, but special applications or later
versions may use it. Applications should not assume the secondary annotation is empty but instead
should use the secondary annotation length field, which is in the primary header.

Primary Annotation
The primary annotation is fixed length. Later versions may append new fields to it, so applications should
use the length that is specified in the file primary header. (Applications should also use the secondary
annotation length from the primary header to find the beginning of data.)

4 bytes unitId Unit id. This is an incrementing unit number starting with 1.
There occasionally may be a unit with id=0 in the file. These
are always idle units, but not all idles have id=0.

4 bytes bitLength Unit length in bits
4 bytes byteLength Unit length in bytes rounded up to the next byte for odd bit size

units
4 bytes streamId Stream id of creator stream
1 byte conveyError 1= The unit is conveying errors
1 byte hasErrors 1= The unit has errors

4-19

1 byte hasTwoPunits 1= The unit has two physical units (see below)
1 byte hasConstantFill 1= The unit contains constant-pattern fill data
1 byte isIdle 1= The unit is an idle (fill) unit
3 bytes spare Not used

The secondary annotation, if it exists, immediately follows the primary annotation.

The unit data immediately follows the secondary annotation. Warning! There may be TWO COPIES of
the unit data! If the “hasTwoPunits” flag in the primary annotation is set, then there will be two back-to-
back copies of the unit data. The first copy will contain errors, and the second copy will be without errors.

The only time you should expect to see two copies is when a unit has errors and is conveying them. The
reason two copies is necessary, a bad one and a clean one, is that streams that are encoding their units
need the clean copy to correctly encode them.

SIM FORMAT
The SIM format is designed for a GSFC Code 520 simulator board and SIM transmitter software. The
SIM format consists of two files: a base file and an update file. The board contains a fixed capacity of
memory (usually four megabytes), which limits the size of the base file. The update file handles units
which extend beyond the size of the SIM memory.

The base file contains a 128-byte header immediately followed by the unit data. The header is not loaded
into the board’s memory, so it does not count against the memory limitation. The units are not annotated.
The files are binary format.

SIM Base File Header (128 bytes)

2 bytes pattern This pattern is always 0xad00.
2 bytes records Number of records in the base file.
 4 bytes recordSize Size of each record in bytes.
4 bytes memory Bytes of memory used up to the maximum. This will be

records times recordSize.

4 bytes offset Byte offset to first record in memory
4 bytes memorySize Number of kilobytes of memory on the board.

108 notUsed Not used.

A record is usually a unit, but it is not required. You might use the record stream to create artificial units
of any size. You would need to do this if your units were variable length or if you wanted to transmit a
text file. The record size must be a multiple of four bytes.

The update file does not contain units. It contains the changes that are needed to be made to the records
currently in memory to bring them up to date. In other words, the update file is a file of differences. The
update file is a stream of variable length update blocks. Each block consists of a 32-bit address and
count register followed one or more 32-bit fields of actual update data.

1 byte count Number of 32-bit update fields in this block. One block will
update from one to 254 consecutive 32-bit memory locations.

3 bytes address Location in memory to update. The SIM memory is treated as
an array of 32-bit integers such that address zero is the first 32
bits of memory. In effect, the address is a long array index.
The update hardware pastes the update data into memory
starting at this location.

1-254 longs data The update data.

4-20

STGEN FORMAT
The STGEN format is designed for a GSFC code 520 simulator board and STGEN transmitter software.
The board contains a fixed capacity of memory (usually four megabytes), so STGEN files must be less
than or equal to that size. The file contains a 128-byte header immediately followed by the unit data. The
header is not loaded into the board’s memory, so it does not count against the memory limitation. The
units are not annotated. The file is binary format.

STGEN Header (128 bytes)

2 bytes pattern This pattern is always 0xff00.
2 bytes records Number of records in the file
4 bytes recordSize Size of each record in bytes
4 bytes memory Bytes of memory used up to the maximum.

This will be records times recordSize.
116 notUsed Not used.

A record is usually a unit, but it is not required. You might use the record stream to create artificial units
of any size. You would need to do this if your units were variable length or if you wanted to transmit a
text file.

TDG FORMAT (TPGEN)
The TDG format is designed for a GSFC code 520 simulator board and TDG transmitter software. The
board contains a fixed capacity of memory (usually four megabytes), so TDG files must be less than or
equal to that size. The file is binary format.

The TDG format is similar to the STGEN format but with severe limitations. There are at least two
variations in the format. Consequently, we do not present the format here, primarily because we
discourage anyone from continuing to support it. If you must know the format, see the transmitter
software and its documentation.

4.13 MUX
The mux stream interleaves multiple input streams into one output stream. It does not support tasks or
errors. See STREAM.DOC for general stream information.

The stream type must be “mux.” You may choose any name for <name> provided it is different from any
other stream name.

The mux stream uses one of two strategies to interleave units. With strategy A, the mux determines unit
order by using order statements, which resemble an event. With strategy F, the mux reads a text file,
which contains the unit interleave order by stream name. The general format is:

#STRATEGY A (DEFAULT)
stream.mux.<name> strategy(A) default(sname) idle(sname) max(n:0) -

eos(c:S) er(ename:0) erSize(1or0:0)

stream.mux.<name>.range stream(sname) uid0(n) uid1(n)
stream.mux.<name>.recur stream(sname) start(n) repeat(n:0) skip(n:0) -

span(n:0) occur(n:0)

stream.mux.<name>.range idle(n) uid0(n) uid1(n)
stream.mux.<name>.recur idle(n) start(n) repeat(n:0) skip(n:0) -

span(n:0) occur(n:0)

#STRATEGY F (USING A FILE)
stream.mux.<name> strategy(F) default(sname) idle(sname) max(n:0) -

eos(c:S) er(ename:0) erSize(1or0:0) file(filename) idleBitSize(n)

4-21

Under strategy A, you may specify any number of range and recur statements in any combination. The
syntax is nearly identical to that of events. See below for more information about the strategies.

strategy(c:A)
Interleave strategy. A=use recur and range statements to determine order. F=read order from file.

Default=A.

default(sname)

The default stream is the backup stream. The mux uses it to get a unit whenever the selected stream
cannot provide one. This can happen if the selected stream stops giving units or if the unit id is not linked
to a stream. The mux stops if the default stream stops providing units. This argument is optional. The
mux will stop if it needs a unit from the default stream and you omitted the default(sname) argument.

max(n:0)

This is the maximum number of units that this mux will process. The mux stops when the number is
processed. default=0 (unlimited).

idle(sname)

Identifies the input stream that provides idle units. You may omit this argument. However, the mux will
then abort the scenario if it is asked to provide an idle unit or it is programmed to generate idle units. For
CCSDS CADU and V1TF scenarios, any packet or frame stream can service idle unit requests. You
should omit this argument for telecommanding (TC) scenarios because there are no idle units in
telecommanding streams.

idleBitSize(n)

Size of idle unit in bits. Only used under strategy F. It is required if the mux file contains an idle unit
declaration and the input stream does not always make a fixed size unit, such as packets.

eos(c:S)
What to do when the selected input stream returns no unit. default=S.
S= skip the stream and use the default stream instead. If the default stream

has stopped, then the mux stops.

I= get an idle idle from that stream. This only works if the input stream makes
fixed size units because the mux requests zero bytes as the idle unit size.

X= stop the mux.

er(ename:0)

Determines if and when to print information to the expected results file. er(1)= always. er(0)= never.
Default=0. You may also specify a unit event, and the mux will print expected only for true units. See
EVENT.DOC. This option writes stream and unit ids for all units that pass through the mux.

erSize(1or0:0)
This argument is meaningful only if er(1) or er(ename) is set.
1= write unit size (bytes) to the expected results file. Default=0. You should

only turn it on if the mux is handling variable size units.

file(filename)

Text file that contains the interleave order. Required for strategy F and not used for strategy A.

MUX INTERLEAVE STRATEGY A
You must provide one or more of the following range or recur statements to identify the list of input
streams and the sequence in which the mux uses them. The mux uses its unit id as a key. If the unit id is

4-22

not in any list, the mux uses the default stream. If the default stream runs out of units, the mux stops.
See EVENT.DOC for range and recur statement syntax.

stream.mux.<name>.range stream(sname) uid0(n) uid1(n)
stream.mux.<name>.recur stream(sname) start(n) repeat(n:0) -
skip(n:0) span(n:0) occur(n:0)

stream.mux.<name>.range idle(n) uid0(n) uid1(n)
stream.mux.<name>.recur idle(n) start(n) repeat(n:0) skip(n:0) -
span(n:0) occur(n:0)

stream(sname)
Input stream name. This argument is ignored if idle(n) is specified. Either idle(n) or stream(sname) is

required.

idle(n)

If present, the mux requests idle units from the idle stream of length n BITS. Set idle(0) if the idle stream
makes fixed size idles. When idle(n) is present, the mux ignores the stream(name) argument.

MUX INTERLEAVE STRATEGY F
The mux gets the interleave order from a text file. The file consists of a lists of stream names, one name
per line. The mux request each stream in order for one unit. When it reaches EOF, it begins the file
again from the beginning. Left justify each name, and do not include internal or trailing whitespace or
blank lines. Here is an example:

ap1
ap1
ap2
idle
ap3
ap2
ap1

The name “idle” is special and indicates that the mux should request an idle unit. This means the name
“idle” is reserved, so you should not use it as a stream name. When you use idle, you may need to use
idleBitSize(n) in the main mux statement.

The muxtool makes a mux input interleave file (strategy F). Some users
wish to have certain streams provide units by percentage. For example,
you might want to have “vc17” frames only appear in 12% of the created
frames. By using muxtool with stream names and percentages or unit
counts, you can create complicated interleave files. You may edit these
files to add or subtract as you need. muxtool will attempt to evenly
distribute the streams over the requested span.

The first column is a list of stream names. The second column is a list
of unit counts. If you use a stream name of “idle” as in the example,
the mux will request idle units. Do name any stream “idle” in your
scripts!

The syntax is: muxtool <thisfile> [<span:100>]. The span is the
number of units (lines) in the mux interleave file. muxtool scales the
second column so that the new total is equal to span (or nearly so).
The default value is 100. The interleave file will be the input file
plus “.mux” extension. The second column does not need to aligned or
in a particular column. Just separate the number from the name by blank
space. You may run this doc file through muxtool as a test. Blank lines

4-23

and lines beginning with “#” are ignored.

stream 10 10
stream 25 25
stream 1 1
stream 5 5
stream 50 50
stream 45 45
stream 12 12
stream 2 2
stream 55 55
stream 43 43
idle 1

4.14 OUTPUT
Output describes what kind of output products the script will produce. You must define one output in
every script. (Some Tiger applications may permit or require more than one ouput. Check the
documentation.) Every output connects to one stream, from which it reads units (packets, frames, etc).
Every output connects to at least one device to which it writes the final output products.

The general format for an output statement is:

output.<otype> <arguments>

Substitute an output type label for <otype>. The available output types, which the tccsds program will
create, are:

plain
fancy
files
sim
stgen
tdg

Other Tiger applications may restrict or add to the list of available output types. Check the
documentation.

Almost all outputs share three common arguments. The inStream(sname) argument tells the output
which stream will provide its input units. The argument value is a stream name, so you must define one
stream by that name in the script. The max(n:0) is an optional argument that tells the output how many
input units to process before stopping. If an input stream stops producing units, then the output will stop
regardless of the value of max argument. The device(dname) argument is the device to which the output
writes the product. Most outputs require that you define at least one device statement in the script.

PLAIN OUTPUT
This output type writes units to a device without headers or trailers. It demands one device for output and
one stream for input. The output is usually a binary file.

output.plain device(dname) inStream(sname) max(n:0)

device(dname)
Output device name. Required. You must include a device.<dname> statement in the script. See

DEVICE.DOC.

inStream(sname)

4-24

Input stream name. Required. You must include a stream definition by that name in the script. See the
documentation for the stream type that you want to plug into this output.

max(n:0)
Maximum number of units to write to the device. 0=unlimited. Default=0.

FANCY OUTPUT
This output type writes units to a device using a special Tiger format. It demands one device for output
and one stream for input. The output is usually a binary file. This format is the best choice if you plan to
run a scenario in stages and you want to create temporary, intermediate data files. For example, in one
script you create a file of packets. Later you run another script to create frames that uses the packet data
file as input. It is best in this case to make the packet data file using the fancy output because that format
retains all of the necessary per unit information. See FORMATS.DOC for file format details.

output.fancy device(dname) inStream(sname) max(n:0)

device(dname)
Output device name. Required. You must include a device.<dname> statement in the script. See

DEVICE.DOC.

inStream(sname)
Input stream name. Required. You must include a stream definition by that name in the script. See the

documentation for the stream type that you want to plug into this output.

max(n:0)
Maximum number of units to write to the device. 0=unlimited. Default=0.

FILES OUTPUT
This output type enhances the plain and fancy formats. It creates a set of smaller output files in place of
one huge output file.

output.files device(dname) inStream(sname) max(n:0) KBperFile(n) type©

device(dname)
Output device name. Required. You must include a device.<dname> statement in the script. See

DEVICE.DOC.

inStream(sname)
Input stream name. Required. You must include a stream definition by that name in the script. See the

documentation for the stream type that you want to plug into this output.

max(n:0)
Maximum number of units to write to the device. 0=unlimited. Default=0.

type©
File type. Required. For plain format, c=plain or P. For fancy format, c=fancy or F.

KBperFile(n)

Number of kilobytes to place into each file. Required. It does not split units between files. It appends a
sequence number to each file name to distinguish them. For example, if the output file is chunk.dat, then
it creates chunk.dat, chunk.dat.0, chunk.dat.1, chunk.dat.2, etc. The fancy format will almost always
exceed KBperFile by as much as one record, so make sure you reserve some space for this information
(at least one full record). For your information, 1 gigabyte = KBperFile(1048576).

4-25

SIM OUTPUT
This output type creates files to support the GSFC code 520 SIM card. It consists of a base file and an
update file, so you must specify two devices instead of the normal one device. All units from the input
stream must be the same size. (If they are not, then you must pipe the input stream into a record, which
you then attach to the output. See RECORD.DOC.)

output.sim inStream(sname) base(dname) update(dname) memorySizeMB(n:4) -

recsPerSide(n) recordSize(n) max(n:0)

inStream(sname)
Input stream name. Required. You must include a stream definition by that name in the script. See the

documentation for the stream type that you want to plug into this output.

base(dname)
Device name for the base file. Required. You must include a device.<dname> statement in the script.

See DEVICE.DOC.

update(dname)
Device name for the update file. Required. You must include a device.<dname> statement in the script.

See DEVICE.DOC.

memorySizeMB(n:4)
Number of megabytes in the entire SIM card memory. Default=4.

recsPerSide(n)

Number of records per side. The SIM memory is divided into an A and B side. If you omit this argument,
it fills both sides with as many units as possible. The scenario will fail if the input stream does not provide
not enough data to fill the specified memory on the SIM card.

max(n:0)

Maximum number of units to write to the devices. 0=unlimited. Default=0. The minimum non-zero value
is two times recsPerSide.

recordSize(n)
Number of bytes in each record (unit). It must be divisible by four. Required. This is usually the size of

the input unit.

STGEN OUTPUT
This output type creates a file to support the GSFC Code 520 SIM card that uses the STGEN data
format. It demands one device for output and one stream for input. All units from the input stream must
be the same size. (If they are not, then you must pipe the input stream into a record, which you then
attach to the output. See RECORD.DOC.) See FORMATS.DOC for the file format.

output.stgen inStream(sname) device(dname) memorySizeMB(n:4) recordSize(n) -

max(n:0)

inStream(sname)
Input stream name. Required. You must include a stream definition by that name in the script. See the

documentation for the stream type that you want to plug into this output.

device(dname)
Output device name. Required. You must include a device.<dname> statement in the script. See

DEVICE.DOC.

recordSize(n)

4-26

Number of bytes in each record (unit). Required. This is usually the size of the input unit.

memorySizeMB(n:4)
Number of megabytes in the SIM card memory. Default=4.

max(n:0)

Number of records (units) to write to the device. The default behavior is to fill the memory with as many
units as possible. The output stops as soon as it fills memory regardless of the value of max(n).

TDG OUTPUT
This output type creates a file to support the GSFC code 520 SIM card that uses the TPGEN/TDG data
format. It demands one device for output and one stream for input. All units from the input stream must
be the same size. (If they are not, then you must pipe the input stream into a record, which you then
attach to the output. See RECORD.DOC.)

output.tdg inStream(sname) device(dname) memorySizeMB(n:4) recordSize(n) -

max(n:0) updates(1or0:1)

inStream(sname)
Input stream name. Required. You must include a stream definition by that name in the script. See the

documentation for the stream type that you want to plug into this output.

device(dname)
Output device name. Required. You must include a device.<dname> statement in the script. See

DEVICE.DOC.

recordSize(n)

Number of bytes in each record (unit). Required. This is usually the size of the input unit.

memorySizeMB(n:4)
Number of megaobytes in the SIM card memory. Default=4.

max(n:0)

Number of records (units) to write to the device. The default behavior is to fill the memory with as many
units as possible. The output stops as soon as it fills memory regardless of the value of max(n).

updates(1or0:1)

Determines which style of TDG file to create. 1= create file with updates. 0= create file without updates.
Default=1. If you plan to use a TDG debugger to transmit test data, use the updates(0) option. Otherwise,
try the updates(1) option.

4.15 PACKET STREAM
This stream makes version one source packets. It can be used in any CCSDS scenario. See
STREAM.DOC for general stream information.

This stream can also read packets from a file instead of making them. You may also use the depot
stream to read packets from a file. See DEPOT.DOC.

The stream type must be “pkt.” You may choose any name for <name> provided it is different from any
other stream name. The usual practice is to use the application id in the stream name.

The data region is the packet’s data zone. The data region statement is required. The 2hdr region refers
to the secondary header. It is required if 2hdr() is set. Often, time is inserted in the secondary header.
See REGION.DOC for region statement syntax. See TIME.DOC for time patterns.

4-27

This stream may perform tasks. See TASK.DOC for sytax. It applies a task after filling regions but before
error insertion. The task path name is “task.”

stream.pkt.<name>.task.<task> event(ename) ...

The following statement shows the mandatory arguments when this stream reads a packet file and does
not make packets. When the packet stream reads packets from a file, it ignores all region statements.
However, the stream may still use time segments, it may still apply errors and tasks, and it may create
idle packets.

stream.pkt.<name> fileType(type) device(name) length(n) appid(n)

stream.pkt.<name> appid(n) tc(1or0:0) variableLength(1or0:0) length(n) -

fill(0xnn:0xc9) varLenEvent(ename) 2hdr(ename:0) -
2hdrLength(n) version(n:0) checksum(1or0:0) dataSeq(1or0:0) -
idleEvent(ename) max(n:0) ERerrors(1or0:1) ERtseg(1or0:1) -
ERgaps(1or0:1) ERdrop(1or0:1) drop(ename) device(dname) -
fileType(type) seq(1or0:1) stepSize(n:1) startSequence(n:0) -
skipZero(1or0:0)

stream.pkt.<name>.region.data ...
stream.pkt.<name>.region.2hdr ...

appid(n)

Application id. Required. Range=0-2047. If reading packets from a file, this number appears in the
expected results report, and the stream does not insert it into any packets. It does put it into the primary
header when it is making packets.

tc(1or0:0)
1= telecommanding packet. 0=telemetry packet. Default=0. When using the telecommanding scenario,

set tc(1).

variableLength(1or0:0)
1= variable length packets, 0= fixed length packets. Default=0.

varLenEvent(ename)

Name of value event that associates unit ids with packet byte lengths. See EVENT.DOC. Meaningful
only if variableLength(1) is set. The event values are packet byte lengths. Not Required. See below.

length(n)

Packet length in bytes. Required if variableLength(0). Min=7. If this packet stream is reading packets
from a file using fileType(F) or fileType(VPKT), then it gets each packet length from the file. Despite
this, you must still provide a valid length(n) argument even though the stream does not use length(n) to
process packets.

2hdr(ename:0)

Determines if a secondary header is present. 1= secondary header present. 0= no secondary header.
Default=0. Otherwise, the argument is a unit event name. See EVENT.DOC. The stream inserts a
secondary header whenever the event is true, and it omits the header when the event is false. If the
secondary header option is on, you must specify 2hdrLength(n), and you must define a 2hdr region.

2hdrLength(n)
Secondary header length in bytes. Required if 2hdr(1).

version(n:0)
Packet version number. Default=0. Range=0-7.

checksum(1or0:0)

4-28

1= put checksum (sum of all previous bytes modulo 256) in last byte of packet. Default=0.

dataSeq(1or0:0)

1= Put the unit id into the first 32 bits of the packet data region, which immediately follows the secondary
header. It overwrites any pattern in that area and becomes part of the data. This feature can be useful in
verifying packet reassembly because it puts a non-wrapping counter in the packet. Note that the packet
must have at least 32 free data bits to enable this option. Default=0.

fill(0xnn:0xc9)
Used for data in idle packets. Default=0xc9.

idleEvent(ename)

Causes this packet stream to create idle packets for specified unit ids. The ename value is a value event
name. See below and also see EVENT.DOC. The values are byte lengths. Do not link to events with
values that are less than seven bytes.

seq(1or0:1)

1= put sequence number in packets. 0= set sequence field to zero in every packet. Default=1.

ERtseg(1or0:1)

1= write time segment information to the expected results file. Default=1. This argument is meaningful
only if this stream has tseg statements.

fileType(type)

Device file type. P=plain unit file. F=fancy unit file. VPKT=packet file. It is required if device(dname) is
specified. The VPKT type is specific to this stream. When used, the packet stream reads packets from a
plain file of packets. It determines each packet length by getting the length field from each packet
primary header. The packet file has no special characteristics and is simply a plain unit file of type(P).
The fileType(VPKT)�type allows the stream to read a plain file of variable length packets, which is not
possible under fileType(P). The packet lengths in the file must be true and without errors.

See STREAM.DOC for undefined arguments.

GROUP FLAGS
The packet header contains a pair of bit flags to designate packet groups. To control these bits, use the
group statement, which is similar to an event range statement. See EVENT.DOC.

stream.pkt.<name>.group uid0(n) uid1(n)

The uid0(n) and uid1(n) arguments define a unit id range. You may specify more than one group by
defining more than one group statement. The uid1(n) argument must be greater than uid0(n). Do not
overlap ranges, and do not let groups intersect packet sections.

VARIABLE LENGTH PACKETS
There are two ways to specify variable length packets. In the first method, varLenEvent(ename) points to
a value event, which associates unit ids with packet lengths. The second method specifies a list of
lengths, which the stream repeats over and over. In either case, variableLength(1) must be set.

method 1.

stream.pkt.<name> varLenEvent(xx) ...
event.value.xx.range uid0(1) uid1(20) v(100)
event.value.xx default(50)

method 2.

4-29

stream.pkt.<name>.length L0(n) ... L9(n)

TIME SEGMENTS
To create packets out of chronological order, use time segment statements. The time segment statement
is similar to group statements and to event range statements. The u0(n) and u1(n) arguments specify the
starting and ending unit ids for a segment. A packet stream may have multiple time segment statements,
and they may overlap.

stream.pkt.<name>.tseg u0(n) u1(n)

The unit ids refer to the packets as if they had been created in time order. For example,

stream.pkt.name.tseg u0(10) u1(15)
stream.pkt.name.tseg u0(10) u1(15)
stream.pkt.name.tseg u0(13) u1(1000)

The packet stream will create packets 10-15, then 10-15 a second time, and finally packets 13-1000. It
then terminates. If a packet region is reading a raw file, you should set extendPastEOF(1) for that region.
Otherwise, setting a time segment that goes beyond the file’s EOF will cause the stream to shut down.

4-30

4.16 RECORD STREAM
This stream lets you design custom units through the script. You may define regions and fill them using
any pattern, and you may use any task. A record stream will not read an input unit file, and it makes only
fixed size units. The stream type must be “record.” You may choose any name for <name> provided it is
different from any other stream name. See STREAM.DOC for general stream information.

stream.record.<name> length(n) sizeBits(n) max(n:0) ERerrors(1or0:1) -

ERdrop(1or0:1) drop(ename) encode(1or0:0)

stream.record.<name>.region.<rname> type(name) startbit(n) bits(n)

startbyte(n) bytes(n)

Every record stream should have one or more region statements that tell it how to fill units. Unlike all
other streams, you must define the region start and length in the region statement. The region names are
insignificant except that two regions may not have the same name. Use the name for description. See
REGION.DOC for syntax, but note that record regions demand additional location arguments.

The record stream may perform tasks. See TASK.DOC for sytax. It applies a task after filling regions but
before error insertion. The task path name is “task.”

stream.record.<name>.task.<task> event(ename) ...

Example:

100-byte units are constructed by three regions. “Header” and “trail” are fixed patterns. “Body” is
constructed from an input stream.

stream.record.custom
stream.record.custom length(100)
stream.record.custom.region.Header type(F) pattern(0x1a) startbyte(0) bytes(8)
stream.record.custom.region.trail type(F) pattern(0x55) startbyte(92) bytes(8)
stream.record.custom.region.Body type© startbyte(8) bytes(84) inStream(pkt)

You can also use a record stream to pack variable length units into fixed size units. Simply define one
region that encompasses the entire unit and use the C (consumer) pattern to fill it.

length(n)

Record size in bytes. It overrides sizeBits(n) if present. Either length(n) or sizeBits(n) is required.

sizeBits(n)

Record size in bits. length(n) will override it. Either length(n) or sizeBits(n) is required.

encode(1or0:0)

Set this argument to 1 if you plan to use the CRC or Reed-Solomon encoder task to encode the unit.
Default=0. If you do not properly set this argument, then the record stream will not correctly handle the
error convey() argument from input stream error statements.

stream.record.<name>.region.<rname> type(tname) startbit(n) bits(n)

startbyte(n) bytes(n)

See REGION.DOC for more information.

type(tname)
Region type. See REGION.DOC.

startbyte(n)

4-31

Region start byte. It must be less than the unit byte length. Either startbyte(n) or startbit(n) is required.
startbit(n) has precedence.

startbit(n)
Region start bit. It must be less than the unit bit length. Either startbyte(n) or startbit(n) is required.

startbit(n) has precedence.

bytes(n)
Length of region in bytes. Either bytes(n) or bits(n) is required. bits(n) has precedence. 0= set to

maximum length.

bits(n)
Length of region in bits. Either bytes(n) or bits(n) is required. bits(n) has precedence. 0= set to maximum

length.

4.17 REGIONS

A region is an area within a unit, which is defined by start bit/byte and length, that a stream fills with one
of several patterns. A pattern may be as simple as a fixed or ramp pattern, or it may involve file data or
complicated custom applications. A region is identified by a region statement, which must be attached to
a stream. Most streams require at least one region statement.

The Tiger core library provides eight patterns, and the CCSDS library provides two more. Applications
may provide additional patterns. Here are the statements for the Tiger core patterns:

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(U) -

wrap(1or0:1) bits(n) format(c:D)

stream.<type>.<stream>.region.<region>.data s0(n) s1(n) s2(n) s3(n) ... s9(n)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(F) -

pattern(0xnn:0xc9)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(A)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(E)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(S) start(n:0) -

step(n:1) repeat(n:0)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(I) -

inStream(sname) emptyUnit(c:F) fill(0xnn:0xc9) perfectFit(1or0:1)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type® -

device(dname) fill(0xnn:0xc9) extendPastEOF(1or0:0)

stream.<type>.<stream>.region.<region> checksum(1or0:0) type© -

inStream(sname) integral(n:0) integralStrategy(n:1) emptyUnit(c:F) -
lastUnit(c:F) fill(0xnn:0xc9) ERcomposition(ename:0) -
ERslip(1or0:1) ERerrors(1or0:1) startupOffset(n:0)

stream.<type>.<stream>.region.<region>.shortslip when© bits(n) event(ename)
stream.<type>.<stream>.region.<region>.longslip when© bits(n) event(ename)

The <stype> and <stream> paths are respectively the type and name of the stream to which a region is
attached. The <region> field is the region name. Each stream type specifies the regions by name that
you must define in the script. For example, many streams require that you define a “data” region. For
those streams, you must include a region statement with “data” substituting for “<region>.” See each
stream’s documentation for region names. You do not define the start bit and length of a region because

4-32

each stream automatically determines them. (The only exception is the record stream, which expects
you to define a region’s location in a unit.)

type(rname)

Region type. It describes how the region is filled. There is usually no default, but some streams may
demand a particular pattern, in which case this argument is omitted. Each type, except for type A
(random pattern) and type E (empty), has additional arguments, which are described below. Special
applications may define additional types.

 Name Description
 A random number sequence
 U user defined sequence
 F fixed pattern
 S step pattern
 R raw file
 C input units
 I inlay pattern
 E empty region. No fill

The following patterns are CCSDS patterns and are usually used in secondary headers. See the
TIME.DOC.

 tcday day segmented time
 tccuc unsegmented time

checksum(1or0:0)

1= The stream substitutes a checksum (sum of all previous region bytes) in the last byte of the region.
default=0. The region must be byte-aligned and greater than two bytes long for this option to be allowed.
You should not use a checksum in certain stream regions, such as CADU or V1TF data regions, because
it violates CCSDS specifications.

The rest of this section defines region arguments by region type.

type U (user defined pattern)

You define a string of bytes in the script to be inserted in a region. If the user pattern is shorter than the
region, the stream will repeat the pattern to fill it. You may enter the pattern in decimal, hex, or as text.

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(U) -

wrap(1or0:1) bits(n) format(c:D)

stream.<type>.<stream>.region.<region>.data s0(n) s1(n) s2(n) s3(n) ... s9(n)

wrap(1or0:1)
0= restart user pattern for each region.
1= begin next region with leftover bytes from current region. default=1.

bits(n)
Number of bits in the user pattern. 0= derive length from user pattern.

format(c:D)
Input format. D=decimal bytes. H=hex bytes. S=text. Default=D.

When using a user string, you must define one or more of the following lines, which define the user
pattern. Each sx() argument defines one byte (decimal or hex) or a string (string format). Not all ten
values must be defined on each line.

stream.<type>.<stream>.region.<region>.data s0(n) s1(n) s2(n) s3(n) ... s9(n)

4-33

examples:
stream.pkt.ap1.region.data.data s0(100) s1(50) s2(23)
stream.pkt.ap1.region.data.data s0(0xff) s1(0x12) s2(0xee)
stream.pkt.ap1.region.data.data s0(The end is near.)

type F (fixed pattern)
The region pattern is a constant byte value. example: c9c9c9c9c9c9c9c9

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(F) -

pattern(0xnn:0xc9)

pattern(0xnn:0xc9)
This is the byte pattern in hexadecimal. default=0xc9.

type S (step pattern)
The region is filled with a step/ramp pattern. example: 1111222233334444

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(S) start(n:0) -

step(n:1) repeat(n:0)

start(n:0)
Starting byte value in decimal. default=0.

step(n:1)
Step increment in decimal. default=1.

repeat(n:0)
Number of times to repeat the start byte before incrementing by the step value.
default=0, which increments after each byte.

type I (inlay pattern)

The region is filled with exactly one input unit. The unit must fit the region; it cannot be too big.

stream.<type>.<stream>.region.<region> checksum(1or0:0) type(I) -

inStream(sname) emptyUnit(c:F) fill(0xnn:0xc9) perfectFit(1or0:1)

inStream(sname)
Input stream name. Required. The input stream must be defined in the script.

emptyUnit(c:F)

How the pattern fills an empty region if there are no input units but there are regions to fill. F=fixed
pattern fill, N=no fill (leave as-is), I=idle units, X=exit, which causes the stream to shut down. Default=F.

fill(0xnn:0xc9)

Fill byte if the input unit is smaller than the region. Also used when emptyUnit=F. default=0xc9.

perfectFit(1or0:1)

1= the input unit must exactly fit the region. It may not be too big or too small. Default=1.

type R (raw file pattern)

The stream fills the region by reading bytes from a file. It reads as many bytes as it needs to fill a region
and continues from where it left off with each new unit region. It uses a constant fill byte for the last
region if the file is depleted.

stream.<type>.<stream>.region.<region> checksum(1or0:0) type® -

4-34

device(dname) fill(0xnn:0xc9) extendPastEOF(1or0:0)

device(dname)
Device name of device from which it will get bytes. See DEVICE.DOC. The target device statement

must be defined in the script. Required.

fill(0xnn:0xc9)
Constant fill byte when file is depleted. default=0xc9.

extendPastEOF(1or0:0)
1= continue filling regions with fill after file is depleted. Default=0.
0= stop stream. If the loader is position past the end of file marker, the stream will shut down unless

extendPastEOF=1.

type C (consumed units)
The stream fills the region by loading unit from an input stream.

stream.<type>.<stream>.region.<region> checksum(1or0:0) type© -

inStream(sname) integral(n:0) integralStrategy(n:1) emptyUnit(c:F) -
lastUnit(c:F) fill(0xnn:0xc9) ERcomposition(ename:0) -
ERslip(1or0:1) ERerrors(1or0:1) startupOffset(n:0)

stream.<type>.<stream>.region.<region>.shortslip when© bits(n) event(ename)
stream.<type>.<stream>.region.<region>.longslip when© bits(n) event(ename)

inStream(sname)
Input stream name. Required. The input stream must be defined in the script.

integral(n:0)
0= Units are loaded back-to-back and split between regions if necessary.
>0 = The pattern loads an integral number of input units (n) into each region.
It adds fill (see lastUnit) to fill out a unit if necessary. It does not split an input unit unless
integralStrategy=0 and the first input unit is bigger than the region. default=0.

integralStrategy(n:1)
What to do if the region is smaller than the first input unit.
0= split the input unit as if integral=0. Do not abort.
1= Abort. default=1.

emptyUnit(c:F)

How the pattern fills an empty region if there are no input units but there are regions to fill. This option
pertains to a region that has not been loaded at all. If the region is partially filled, it used lastUnit©
instead. default=F. F=fixed pattern fill, N=no fill (leave as-is), I=idle units, X=exit, which causes the
stream to shut down.

lastUnit(c:F)

How the pattern fills the last, partially filled region when there are no more input units. It also determines
how it fills partial regions when integral>0. default=F. F=fixed pattern fill, N=no fill (leave as-is), I=idle
units. X is not an option for lastUnit().

fill(0xnn:0xc9)
Fill byte when lastUnit=F or emptyUnit=F. default=0xc9.

ERcomposition(ename:0)

When active, the stream writes a list of input units that are contained in each unit’s region. It also notes
the “first header pointer,” which is an offset to the first input unit header (or unit start) and the number of
bits or bytes of the last input unit. 1= write composition for every unit. 0= do not show composition.

4-35

default=0. Otherwise, the value is a boolean event name. The stream prints composition only when the
event is true. This lets you retrict output by specifying active ranges. See EVENT.DOC.

ERslip(1or0:1)

1= write slip information to the expected results file. 0= do not write slip information. default=1.

ERerrors(1or0:1)

1=identify regions that have inherited errors from input units to the expected results file. 0=ignore
inherited errors. default=1.

startupOffset(n:0)
The pattern skips n bits of the first region before loading the first input unit. It zeroes the skipped bits.

default=0.

The consumer pattern may slip bits as it loads units. It may slip short or long any number of bits. Short
slips are trimmed from the end of input units. Long slips are zero bits at the beginning of input units. To
slip short or long, add the additional script lines:

stream.<type>.<stream>.region.<region>.shortslip when© bits(n) event(ename)
stream.<type>.<stream>.region.<region>.longslip when© bits(n) event(ename)

when©

Determines when to slip. Required, no default. N=Never. Do not slip. F=First. Slip the first input unit per
region only. A=All. Slip every input unit in a region.

bits(n)

Number of bits to slip. Required. minimum=1. WARNING! THE CURRENT TIGER VERSION

ONLY SUPPORTS BYTE-WIDE SLIPS. You may only slip in multiples of eight bits.

event(ename)

The event defines which units (by unit id) will be slipped. See EVENT.DOC. The target event statement
must exist in the script. If you set event(1), then the stream slip every unit.

4.18 STREAM
This is the general stream definition from which all other streams are derived. Not all arguments apply to
all streams. Exceptions are noted below.

Many streams can be set up to get units from a file instead of making them. The key arguments to do
this are fileType© and device(dname). All CCSDS streams allow this diversion. There is also a generic
unit-reader stream called “depot,” which is dedicated to reading units from a file. See DEPOT.DOC.

stream.<type>.<name> max(n:0) sizeBits(n) ERerrors(1or0:1) ERgaps(1or0:1) -

ERdrop(1or0:1) device(dname) fileType© stepSize(n:1) -
startSequence(n:0) skipZero(1or0:0) drop(ename)

max(n:0)

The stream will stop producing units when the unit id exceeds the specified id. default=0 (unlimited). Not
required. If omitted, there is no limit. This argument may also be called maxUnitId(n).

sizeBits(n)
Unit size in bits. Some streams may not use this argument and instead may define a custom argument.

Check each stream definition for details.

ERerrors(1or0:1)
1= put unit error information into the expected results file. default=1.

4-36

ERgaps(1or0:1)
1= put unit gap information in the expected results file. default=1. It is if the units do not have sequence

numbers.

ERdrop(1or0:1)
1= identify discarded units in the expected results file. default=1.

device(dname)

Device name of file that contains input units. See DEVICE.DOC. The existence of this argument causes
the stream to read units from a device instead of making them. This argument does not apply to all
streams. See each stream definition for details. A device statement must be defined in the script.

fileType©

Device file type. P=plain unit file. F=fancy unit file. It is required if device(dname) is specified.

stepSize(n:1)

Sequence number step size if the stream creates units that have sequence numbers. It does not apply to
all streams. It may be positive or negative but may not be zero. default=1.

startSequence(n:0)

Sequence number of the first unit if the stream creates units that have a sequence number. It does not
apply to all streams. It may be positive or negative. default=0.

skipZero(1or0:0)

1= the stream skips sequence number zero if it creates units that have a sequence number. It does not
apply to all streams. default=0.

drop(ename)

This argument causes the stream to discard units based upon the event. See EVENT.DOC. If omitted,
the stream does not drop any units. Not required. If present, the event must exist in the script.

4.19 TASKS
A task is something that a stream or an output does to a unit. You define a task using a task statement,
which you must attach to a stream or to an output. Tasks are linked to events. The event tells the stream
or output when to apply the task. Tasks behave much like errors. In fact, an error is a specialized task.
The primary use of a task is to insert values into units. The advantage of a task is that it allows the user
to change the characteristics of a unit through the script without reprogramming the unit construction. For
example, you can use tasks to deposit special values into units, which may be beyond the scope of a
stream.

The following tasks are available:

set deposit a 1-32 bit value anywhere in a unit.
add add a 1-32 bit value to the existing 1-32 bit value anywhere in a unit.
flip invert 1+ bits anywhere in a unit.

flipmask invert 1-32 bits anywhere in a unit based upon a care/don’t care mask.
resize change a unit’s size by truncation or extension. You can either designated a

target length or you may specify the number of bit/bytes to extend or truncate
a unit.

sequence insert a sequence number anywhere in a unit. The sequence number
automatically increments by the step value after each application.

pn pseudo noise encode the unit, skipping any sync pattern. This is the CCSDS
version of the encoder.

crc crc encode the unit. The encoder puts the 16-bit CRC in the last two bytes of
the unit.

4-37

rs Reed-Solomon encode the unit. The encoder puts the parity in the last bytes of
the unit. (paritySize = 32 * interleave.) The unit size must be (codeWordLength
* interleave + syncLength) bytes long.

Support for tasks is stream and output dependent. See the documentation for the stream or output
component for more information. The general formats are:

stream.<stype>.<stream>.<task>.flip event(ename) startbit(n) bits(n)

stream.<stype>.<stream>.<task>.set event(ename) startbit(n) bits(n) v(n)

stream.<stype>.<stream>.<task>.add event(ename) startbit(n) bits(n) v(n)

stream.<stype>.<stream>.<task>.flipmask event(ename) startbit(n) bits(n) -

emask(0xnnnnnnnn)

stream.<stype>.<stream>.<task>.resize label(name) event(ename) -

chop(1or0) fill(0xnn:0) v(n) bits(1or0:0) abs(1or0:0)

stream.<stype>.<stream>.<task>.sequence event(ename) startbit(n) bits(n) -

stepSize(n:1) startSequence(n:0) skipZero(1or0:0)

stream.<stype>.<stream>.<task>.pn event(ename) skipBytes(n:0)

stream.<stype>.<stream>.<task>.crc event(ename) syncBytes(n:4) length(n) -

CRCstart(0xnnnn:0xffff) CRCincludeSync(1or0:0)

stream.<stype>.<stream>.<task>.rs event(ename) syncBytes(n:4) -

RSdual(1or0:1) RSinterleave(n:4) RScodeLength(n:255)

The <stype> and <stream> are the type and name of the stream to which the task is attached. For
outputs, substitute the output prefix for stream.<stype>.<stream>. Set <task> to either “task” or “xtask.”
Use “task” to apply the task before the stream encodes units, and use “xtask” to apply the task after the
stream encodes units. Some streams may not support both forms, and others may add additional <task>
paths. See the appropriate stream documentation for details.

For tasks that duplicate errors, see ERROR.DOC. Note that these tasks do not use the convey(1or0)
argument. These tasks include:

 flip invert a consecutive string of bits.
 set deposit a 1-32 bit value somewhere in a unit.
 add add a 1-32 bit value somewhere in a unit.
 flipmask flip up to 32 bits corresponding to “on” bits in a 32-bit mask.
 resize truncate or extend a unit

event(ename)
Event name. event(1)= always true; apply to every unit. Required. An event statement must be in the

script. See EVENT.DOC.

skipBytes(n:0)
Number of bytes in the sync pattern. Default=0. The PN encoder skips this many bytes from the start of

the unit.

stepSize(n:1)

Sequence number step size. It may be positive or negative but may not be zero. default=1.

startSequence(n:0)
Starting sequence number. It may be positive or negative. default=0.

4-38

skipZero(1or0:0)
1= the stream skips sequence number zero. default=0.

startbit(n)

The startbit and bits arguments define a location in a unit where the task is applied. Startbit may be
positive or negative. When zero or positive, the stream measures the location from the start of the unit
with the first bit being bit zero. The maximum value for startbit is the unit size in bits minus one. When
startbit is negative, the stream measures the location from the end of the unit. For example, startbit(-1)
points to the last bit, and startbit(-16) points to 16 bits from the unit end. Required.

bits(n)

The number of bits in the task field. See startbit(n) description. For flip, it may be as large as the unit size
in bits minus startbit(n). If you set bits(0), the stream inverts all bits in the unit starting with startbit(n) to
the end of the unit. For all other task types, the range is 1 to 32 bits. Required.

syncBytes(n:4)
Number of bytes in sync pattern. The task skips this many before performing the task regardless on

whether the unit has a real sync pattern or not. Default=4. Range=0-4.

length(n)
Unit length in bytes. Required. min=4.

CRCstart(0xnnnn:0xffff)
The initial CRC16 encoding value. Default=0xffff.

CRCincludeSync(1or0:0)
1= include sync pattern in CRC encoding. Default=0. See syncLength(n).

RSdual(1or0:1)
1= assume dual mode. Default=1.

RSinterleave(n:4)
RS interleave. range=1-32. Default=4.

RScodeLength(n:255)
Reed-Solomon codeword length in bytes. Default=255. range=33-255.

4.20 TELECOMMAND PHYSICAL CHANNEL STREAM

This stream makes CLTUs with acquisition and idle sequences. It requires plain CLTUs as input. It may
be used in the TC scenario only. See STREAM.DOC for general stream information.

The stream type must be “tcphy.” You may choose any name for <name> provided it is different from
any other stream name.

stream.tcphy.<name> inStream(sname) acquisition(n:128) start(n:1) idle(n:8) -

max(n:0) sizeBits(n:0) ERerrors(1or0:1) drop(ename) -
ERgaps(1or0:1) ERdrop(1or0:1) device(dlabel) fileType©

This stream may perform tasks. See TASKS. It applies “task” to units before error insertion and “xtask”
to units after error insertion.

stream.tcphy.<name>.task.<name> event(ename) ...
stream.tcphy.<name>.xtask.<name> event(ename) ...

inStream(sname)

4-39

Input stream name. It should be a stream that provides plain CLTUs. Required.

acquisition(n:128)

Number of acquisition sequence bits. Default=128. This number must be byte divisible. This argument is
ignored if acqEvent(ename) is specified.

acqEvent(ename)

Name of value event that specifies the acquisition sequence length in bits for the CLTUs. All event
values must be byte divisible. If specified, acquisition(n) is ignored. See EVENT.DOC.

start(n:1)
acquisition start bit value, 1 or 0. Default=1.

idle(n:8)
Number of idle sequence bits. Default=8. This number must be byte divisible.

sizeBits(n:0)

If greater than zero, it defines the bit length of all output CLTUs. All output CLTUs will have the same
size defined by sizeBits(n). The stream will extend the idle sequence if necessary. If an input CLTU is
bigger than sizeBits(n), then this stream aborts. Default=0.

See STREAM.DOC for undefined arguments.

4.21 TELECOMMAND TRANSFER FRAME

This stream makes Telecommand Transfer Frames (TCTFs) from either source packets or telecommand
segments. It may only be used in the TC scenario. See STREAM.DOC for general stream information.

This stream can read TCTFs from a file instead of making them. You may also use the depot stream to
read TCTFs from a file. See DEPOT.DOC.

The stream type must be “tctf.” You may choose any name for <name> provided it is different from any
other stream name.

stream.tctf.<name> inStream(sname) spid(n) vcid(n) length(n:1024) -

crc(1or0:0) CRCstart(0xnnnn:0xffff) segment(1or0:0) -
aggregate(1or0:1) version(n:0) control(ename) max(n:0) -
ERerrors(1or0:1) ERgaps(1or0:1) ERdrop(1or0:1) drop(ename) -
device(dname) fileType© stepSize(n:1) startSequence(n:0) -
skipZero(1or0:0)

This stream may perform tasks. See TASKS. It applies “task” before error insertion and encoding, and
“xtask” after error insertion and encoding.

stream.tctf.<name>.task.<task> event(ename) ...
stream.tctf.<name>.xtask.<task> event(ename) ...

inStream(sname)
Input stream name. It should be a stream that provides either source packets or telecommand segments.

Required unless reading from a file.

spid(n)
Spacecraft id. Required. Range=0-1023.

vcid(n)
Virtual channel. Required. Range=0-63.

4-40

length(n:1024)

Maximum frame length in bytes. Default=1024. Range=8-1024. Each TCTF length may be smaller
depending on the size of the input unit. The input unit length (packet or tcsegment) must be no greater
than length-5 if crc(0) or length-7 if crc(1).

crc(1or0:0)
1= encode frame with CRC16. Default=0.

CRCstart(0xnnnn:0xffff)
CRC start value if crc(1). Default=0xffff.

segment(1or0:0)

1= input stream is a TC segment stream or a mux connected to a TC segment stream. Default=0.

aggregate(1or0:1)
1= collect one more packet per TCTF. Meaningful only if segment(0). Default=1.

version(n:0)
Frame version. Default=0. Range=0-3.

control(ename)

This event must be a value event. It identifies the BYPASS and CONTROL COMMAND bit field for each
output frame. Value definition: 0= type-AD, 2= type-BD, 3=type-BC. If control(ename) is omitted, the
default is 0=type-AD. See EVENT.DOC.

See STREAM.DOC for undefined arguments.

4.22 TIME

This section describes NASA and CCSDS timecode formats, which Tiger treats as unit regions. See
REGION.DOC for region information. They automatically increment by the step value whenever they
are loaded into a unit.

Timecode patterns are usually loaded into packet or frame secondary headers. When you use a
timecode as a secondary header, you must set the parent stream’s 2hdrLength() argument to the proper
length, which must be greater than or equal to the timecode length. If you choose a secondary header
length that is larger than the timecode length, then the stream will insert zeroes in the extra bytes.

4-41

Tiger supports the following formats. See the appropriate document.

type description Document
TcEDOS EDOS secondary PKTTIME.DOC
tcuc unsegmented TCUC.DOC
Tcday day segmented TCDAY.DOC
Pb5 Pb5 format PB5.DOC
pb5ja PB-5J PB5J.DOC
pb5jb PB-5J PB5J.DOC
pb5jc PB-5J PB5J.DOC
pb5jd PB-5J PB5J.DOC

4.22A TCEDOS TIME FORMAT

This document defines the region that is EDOS packet secondary header. It is
type "tcEDOS" in the 2hdr region statement. The secondary header is nine bytes
long. See PACKET.DOC for the packet stream definition.

stream.pkt.<name>.region.2hdr type(tcEDOS) day(n:0) msOfDay(n:0) -
 microOfMs(n:0) msStep(n:1000) -
 microStep(n:0) quicklook(event) -
 ramp(n:0) drift(n:0) driftFreq(n)

type(tcEDOS)
This field must appear exactly as shown.

day(n:0)
Start day from epoch. Default=0.

msOfDay(n:0)
Start millisecond of day from epoch. Default=0. Range=0-86399999.

microOfMs(n:0)
Start microsecond of millisecond from epoch. Default=0. Range=0-999.

msStep(n:1000)
Millisecond step size between consecutive timecode units. Default=1000. n>=0.

microStep(n:0)
Microsecond of millisecond step size between consecutive timecode units.
Default=0. Range=0-999.

ramp(n:0)
If non-zero, the timecode increments every nth step only. It remains constant
for intervening steps. For example, ramp(5) means keep the timecode constant for
five consecutive steps before incrementing it by the step value. This simulates
a time step granularity that is smaller than the timecode granularity.
Default=0, which is the same as 1 and means increment every step.

drift(n:0)
Adds clock ticks (positive only) to the timecode based on drift frequency to
simulate clock drift. The drift is in microseconds. Default=0.

driftFreq(n)
Required when drift(n) is defined and non-zero. Minimum=2. This defines the step
frequency to apply time drift. For example, if drift=1 and driftFreq=5, it adds

4-42

one additional microsecond to the time every fifth step.

quicklook(event)
This identifies which units, by unit id, will have the quicklook flag turned
on. (See EVENT.DOC.) The argument references a boolean event. Not required.
If omitted, the quicklook flag is always off.

4.22B TCCUC TIME FORMAT

stream.<stype>.<sname>.region.<rname> -
 type(tccuc) -
 coarseBytes(n:4) fineBytes(n:0) jan58(1or0:1) omitPfield(1or0:0) secondOct(1or0:0)
 seconds(n:0) fine(n:0) -
 stepSeconds(n:1) stepFine(n:0) -
 ramp(n:0) drift(n:0) driftFreq(n) -
 checksum(1or0:0)

This section describes the CCSDS Unsegmented Timecode format, which Tiger
treats as a unit region. See TIME.DOC for general time information and
REGION.DOC for region information.

This is an official CCSDS timecode. It is a fixed size pattern of length:

 coarseLength(1-4) + fineLength(0-3) + 1

Subtract one if you omit the preamble byte (P field). The stream argument
2dhrLength(n) must be at least as long as the time length.

type(tccuc)
This argument must appear exactly as shown.

checksum(1or0:0)
1= The stream substitutes a checksum (sum of all previous region bytes) in the
last byte of the region. default=0. The region must be byte-aligned and
greater than the timecode length plus one.

seconds(n:0)
Start seconds from epoch. (Coarse time.) Default=0.

fine(n:0)
Start subseconds from epoch. (Fine time.) Default=0. The range depends upon
the fine field width. The top value is one less than the maximum field value.

stepSeconds(n:1)
Seconds step size between consecutive timecode steps. Default=1. n>=0.

stepFine(n:0)
Subseconds step size between consecutive timecode steps. Default=0. n>=0. The
range depends upon the fine field width. The top value is one less than the
maximum field value.

coarseBytes(n:4)
Number of bytes in coarse time (seconds) field. Default=4. Range=1-4.

4-43

fineBytes(n:0)
Number of bytes in fine time (subseconds) field. Default=0. Range=0-3.

jan58(1or0:1)
1=epoch from jan 1, 1958. 0=user defined epoch. Default=1.

omitPfield(1or0:0)
1=omit preamble byte. 0=include preamble byte. Default=0.
If you omit the preamble byte, subtract one byte from the timecode length.

SecondOct(1or0:0)
1 = add an extra byte to time code. Required for EOS-PM spacecraft.
Default = 0

ramp(n:0)
If non-zero, the timecode increments every nth step only. It remains constant
for intervening steps. For example, ramp(5) means keep the timecode constant
for five consecutive steps before incrementing it by the step value. This
simulates a time step granularity that is smaller than the timecode
granularity. Default=0, which is the same as 1 and means increment every step.

drift(n:0)
Adds clock ticks (positive only) to the timecode based on drift frequency to
simulate clock drift. If you use fine time, the drift is in the smallest fine
time tick. Otherwise, it is in coarse time ticks. Default=0.

driftFreq(n)
Required when drift(n) is defined and non-zero. Minimum=2. This defines the
step frequency to apply time drift. For example, if drift=1 and driftFreq=5,
one additional fine time tick (or coarse time tick) is added to the time on
every fifth step.

4.22C TCDAY TIME FORMAT

stream.<stype>.<sname>.region.<rname> -
 type(tcday) -
 16BitsDay(1or0:1) jan58(1or0:1) omitPfield(1or0:0) micro(1or0:0) -
 day(n:0) msOfDay(n:0) microOfMs(n:0) -
 msStep(n:1000) microStep(n:0) -
 ramp(n:0) drift(n:0) driftFreq(n) -
 checksum(1or0:0)

This section describes the CCSDS Day Segmented Timecode format, which Tiger
treats as a unit region. See TIME.DOC for general time information and
REGION.DOC for region information.

This fixed size pattern has a basic length of seven bytes. Add one byte if you
use a 24-bit day field. Add two bytes if the timecode includes 16 bits of
microseconds. Subtract one if you omit the preamble byte (P field). The stream
argument 2dhrLength(n) must be at least as long as the time length.

type(tcday)
This argument must appear exactly as shown.

4-44

checksum(1or0:0)
1= The stream substitutes a checksum (sum of all previous region bytes) in the
last byte of the region. default=0. The region must be byte-aligned and
greater than the timecode length plus one.

day(n:0)
Start day from epoch. Default=0.

msOfDay(n:0)
Start millisecond of day from epoch. Default=0. Range=0-86399999.

micro(1or0:0)
1=timecode has 16-bit microseconds field. Default=0.

microOfMs(n:0)
Start microsecond of millisecond from epoch. Default=0. Range=0-999. You may
specify this argument even if micro(0) is set. See note in msStep(n).

16BitsDay(1or0:1)
1=day field is 16 bits. 0=day field is 24 bits. Default=1.

jan58(1or0:1)
1=epoch from jan 1, 1958. 0=user defined epoch. Default=1.

msStep(n:1000)
Millisecond step size between consecutive times. Default=1000. You may specify
this argument even if micro(0) is set. If you do this, the timecode for
consecutive times may appear to be constant because the timecode does not have
micosecond granularity.

microStep(n:0)
Microsecond of millisecond step size between consecutive times.
Default=0. Range=0-999.

omitPfield(1or0:0)
1=omit preamble byte. 0=include preamble byte. Default=0.
If you omit the preamble byte, subtract one byte from the timecode length.

ramp(n:0)
If non-zero, the timecode increments every nth step only. It remains constant
for intervening steps. For example, ramp(5) means keep the timecode constant
for five consecutive steps before incrementing it by the step value. This
simulates a time step granularity that is smaller than the timecode
granularity. Default=0, which is the same as 1 and means increment every step.

drift(n:0)
Adds clock ticks (positive only) to the timecode based on drift frequency to
simulate clock drift. If micro(1) is set or microStep is non-zero, the drift
is in microseconds. Otherwise, it is in milliseconds. Default=0.

driftFreq(n)
Required when drift(n) is defined and non-zero. Minimum=2. This defines the
step frequency to apply time drift. For example, if drift=1 and driftFreq=5,
it adds one additional microsecond (or millisecond) to the time every fifth
step.

4-45

4.22D PB-5 TIME FORMAT

This section defines the PB5 timecode. It is not related to the PB-5J timecode.
The PDS and EDS outputs and the EDU stream use it to construct EDOS Service
Headers (ESH). Each component has a different path to the PB5 mechanism. Note
that the arguments are the same, and their reference only differ in the path to
it. For more information on timecodes, see TIME.DOC.

PDS output statement
output.pds.esh day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0) -

dayStep(n:0) secondsStep(n:1) milliStep(n:0) microStep(n:0) -
ramp(n:0) drift(n:0) driftFreq(n)

EDS output statement
output.pds.esh day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0) -

dayStep(n:0) secondsStep(n:1) milliStep(n:0) microStep(n:0) -
ramp(n:0) drift(n:0) driftFreq(n)

EDU stream statement
stream.edu.<name>.pb5 day(n:0) dayStep(n:0) seconds(n:0) milliseconds(n:0) -
 microseconds(n:0) secondsStep(n:1) milliStep(n:0) -
 microStep(n:0) ramp(n:0) drift(n:0) driftFreq(n)

Command block stream statement
stream.cmdblk.<name>.region.pb5 day(n:0) dayStep(n:0) seconds(n:0) -

milliseconds(n:0) microseconds(n:0) secondsStep(n:1) milliStep(n:0) -
 microStep(n:0) ramp(n:0) drift(n:0) driftFreq(n)

day(n:0)
Start day from epoch. Default=0.

seconds(n:0)
Start second of day from epoch. Default=0.

milliseconds(n:0)
Start millisecond of day from epoch. Default=0. Range=0-86,399,999.

microseconds(n:0)
Start microsecond of millisecond from epoch. Default=0. Range=0-999.

dayStep(n:0)
Day step size. Default=0.

secondsStep(n:1)
Seconds step size. Default=1.

milliStep(n:0)
Millisecond step size. Default=0.

microStep(n:0)
Microseconds step size. Default=0.

ramp(n:0)

4-46

If non-zero, the timecode increments every nth tick only. It remains constant
for intervening ticks. For example, ramp(5) means keep the timecode constant for
five consecutive ticks before incrementing it by the step value. This simulates
a time step granularity that is smaller than the timecode granularity.
Default=0, which is the same as 1 and means increment every tick.

drift(n:0)
Adds clock ticks (positive only) to the timecode based on drift frequency to
simulate clock drift. A tick is a microsecond. Default=0, which is no drift.

driftFreq(n)
Required when drift(n) is defined and non-zero. Minimum=2. This defines the tick
frequency to apply time drift. For example, if drift=1 and driftFreq=5, one
additional microsecond is added to the time every on fifth tick.

4.22E PB5-J TIME FORMAT

PB-5JA
stream.<stype>.<sname>.region.<rname> -
 type(pb5ja) -
 day(n:0) dayStep(n:0) -
 seconds(n:0) secondsStep(n:1) -
 omitPfield(1or0:1) -
 ramp(n:0) drift(n:0) driftFreq(n)

PB-5JB
stream.<stype>.<sname>.region.<rname> -
 type(pb5jb) -
 day(n:0) dayStep(n:0) -
 seconds(n:0) secondsStep(n:1) -
 msOfSec(n:0) msStep(n:0) -
 omitPfield(1or0:1) -
 ramp(n:0) drift(n:0) driftFreq(n)

PB-5JC
stream.<stype>.<sname>.region.<rname> -
 type(pb5jc) -
 day(n:0) dayStep(n:0) -
 seconds(n:0) secondsStep(n:1) -
 msOfSec(n:0) msStep(n:0) -
 microOfMs(n:0) microStep(n:0) -
 omitPfield(1or0:1) -
 ramp(n:0) drift(n:0) driftFreq(n)

PB5JD
stream.<stype>.<sname>.region.<rname> -
 type(pb5jd) -
 day(n:0) dayStep(n:0) -
 seconds(n:0) secondsStep(n:1) -
 msOfSec(n:0) msStep(n:0) -
 microOfMs(n:0) microStep(n:0) -

4-47

 nsOfMicro(n:0) nsStep(n:0) -
 omitPfield(1or0:1) -
 ramp(n:0) drift(n:0) driftFreq(n)

This section describes the NASA PB-5J timecode formats, which Tiger treats as
unit regions. See TIME.DOC for general time information and REGION.DOC for
region information.

The PB-5J general format is this (from first byte to last byte):

bytes description
2 julian day from some epoch
3 seconds of day
2 millisecond of second
2 microsecond of millisecond
2 nanosecond of microsecond
1 ID code

There are four Pb-5J forms designated A-D. The difference between them is
accuracy. All forms have julian day and seconds of day. The remaining bytes
are optional and depend on the form. If the ID code is present, it is always
the last byte, but it is often omitted. If present, add one byte to the
length.

When you use a PB-5J time as a packet or frame secondary header, you must set
the parent stream's 2hdrLength() argument to the proper length, which must be
greater than or equal to the form length. If you choose a secondary header
length that is larger than the form length, then the stream will insert zeroes
in the extra bytes.

type length* accuracy ID code (Pfield)
pb5ja 5 sec_ 0x65
pb5jb 7 ms 0x67
pb5jc 9 us 0x69
pb5jd 11 ns 0x6b

* does not count the ID code

type(stype)
This argument must be either pb5ja, pb5jb, pb5jc, or pb5jd. Required.

day(n:0)
Start day from epoch. Default=0.

dayStep(n:0)
Day step size between consecutive times. Default=0.

seconds(n:0)
Start seconds of day. Default=0. Range= 0-86,399.

stepSeconds(n:1)
Seconds step size between consecutive times. Default=1. Range= 0-86,399.

msOfSec(n:0)
Start milliseconds of second. Default=0. Range= 0-999.

4-48

msStep(n:0)
Millisecond step size between consecutive times. Default=0.

microOfMs(n:0)
Start microseconds of second. Default=0. Range= 0-999.

microStep(n:0)
Microsecond step size between consecutive times. Default=0.

omitPfield(1or0:1)
1=omit id code byte. 0=include ide code byte. Default=1.

ramp(n:0)
If non-zero, the timecode increments every nth step instead of every step. For
example, ramp(5) means keep the timecode constant for five consecutive steps
before incrementing it by the step value. This simulates a time step
granularity that is smaller than the timecode granularity. Default=0, which
causes incrementing at every step and is the same as ramp(1).

drift(n:0)
Adds clock ticks (positive only) to the timecode based on drift frequency. It
simulates clock drift. The drift is always added to the smallest unit of
granularity. Default=0.

driftFreq(n)
Required when drift(n) is defined and non-zero. Minimum=2. This defines the
step frequency to apply time drift. For example, if drift=1 and driftFreq=5
for PB-5JB, then one additional millisecond is added to the time on every
fifth step.

4.23 EDU STREAM

The ETS EDU stream makes EDOS packet SDUs. A packet SDU consists of an ESH (EDOS Service
Header) and a pakcet. The stream should be attached to a single packet stream via inStream(sname).
See PACKET.DOC for packet stream information.

The stream type must be “edu.” You may choose any name for <name> provided it is different from any
other stream name.

The ESH contains a field that identifies a packet length error. This stream does not use a script argument
to control that flag. Instead, it sets that flag by comparing the expected packet length to the length it
fetches from the packet data. If you want to create packet length errors for selected SDUs, then
introduce bit errors to the packet length field in the input packet stream. You cannot generate packet
length errors directly in the edu stream except with the clever use of tasks.

The ESH contains a field that identifies packet sequence errors. This stream does not use a script
argument to control that flag. Instead, it sets it by tracking the sequence counter, which it fetches from
the packets. If you want to create packet sequence errors, then you must introduce them in the input
packet stream by either dropping packets or by putting bit errors in the packet sequence field. As with
packet length errors, you cannot generate sequence errors directly in the edu stream. The sequence
checker expects the packet sequence increment to be +1 and will generate sequence errors for any other
step size.

4-49

When a VCDU sequence error occurs, the first packet from the next VCDU should be marked as having
a packet sequence error. The stream does NOT automatically do this because it does not know which
packet is the first. You will need to insert the proper script statements to achieve this effect.

If you connect more than one packet stream to a single edu stream, then you should expect to see many
packet sequence errors. To properly handle multiple packet streams, create an edu stream for each
packet stream, and then mux the edu streams.

The edu stream does not make SDUs from idle packets. It discards idle packets.

The pb5 support statement is required because it defines the timekeeping mechanism that the stream
uses to stamp every SDU. See PB5.DOC for syntax information.

stream.edu.<name> inStream(sname) version(n:0) port(n:0) playback(1or0:0) -

capture(1or0:0) spid(n:42) vcid(n:0) vcduBreak(ename) -
RSuncorr(ename) RSchs(ename) RScs(ename) fillEvent(ename) -
fill(0xnn:0x00) max(n:0) drop(event) ERerrors(1or0:1) -
ERdrop(1or0:1)

stream.edu.<name>.pb5 day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0) -

dayStep(n:0) secondsStep(n:1) milliStep(n:0) microStep(n:0) -
ramp(n:0) drift(n:0) driftFreq(n)

This stream may perform tasks. See TASKS. It applies “task” to units before error insertion and “xtask”
to units after error insertion.

stream.edu.<name>.task.<task> event(ename) ...
stream.edu.<name>.xtask.<task> event(ename) ...

inStream(sname)

Input stream name. This should be a stream that provides packets. Required unless reading from a file.

version(n:0)
ESH version number. Default=0. Range= 0-15.

port(n:0)
ESH port number. Default=0. Range= 0-63.

playback(1or0:0)
ESH playback flag. Default=0.

capture(1or0:0)
ESH recovery process indicator. 1=data capture playback. 0=live. Default=0.

spid(n:42)
Spacecraft id. Default=42.

vcid(n:0)
Virtual channel id. Default=0.

vcduBreak(ename)

Boolean event that identifies which SDUs should have the “source VCDU sequence counter
discontinuity” flag set. See EVENT.DOC. If omitted, no SDUs have the flag set. This may not be
meaningful for packet SDUs.

RSuncorr(ename)

Boolean event that identifies which SDUs should have the “Reed-Solomon control flag” set. See
EVENT.DOC. If omitted, no SDUs have the flag set. This may not be meaningful for packet SDUs.

4-50

RSchs(ename)

Value event that identifies which SDUs have Reed-Solomon header corrected symbols. The value is the
number of corrected header symbols in the parent VCDUs. See EVENT.DOC. If omitted, all SDUs have
zero Reed-Solomon header corrected symbols. This should not be meaningful for EDOS because the
CADU headers are not encoded.

RScs(ename)

Value event that identifies which SDUs have Reed-Solomon corrected symbols. The value is the number
of corrected symbols in the parent VCDUs. See EVENT.DOC. If omitted, all SDUs have zero Reed-
Solomon corrected symbols.

fillEvent(ename)

Value event that identifies which SDUs contain short packets. The value is the number of fill bytes at the
end of a packet. The stream will overwrite the requisite number of trailing bytes in affected packets with
the fill pattern. If omitted, there are no short packets.

fill(0xnn:0x00)
The fill byte for short packets. Default=0x0.

See STREAM.DOC for undefined arguments.

4.24 ESTP PRODUCTS
The “etsp” program creates ETS data products. These include:

a. Production Data Sets (PDS)
b. Expedited Data Sets (EDS)
c. Rate Buffered Packet files containing packet EDUs
d. EDU files

To run the program, type:

etsp <script> [<erfile>]

Unlike sctgen and tccsds, the script does not require a “main” statement. Each script may create only
one output product.

If you omit arguments, etsp prints its version number and a syntax message. The second file, the
expected results file name, is optional. If omitted, etsp derives the name from the script file name.

A PDS or EDS consists of a construction record file plus one or more data files. The Rate Buffered
Packet file (RBP) is a file of packet EDUs from one application id. The EDU file is nearly identical to the
RBP file except for two differences. First, the RBP file contains only one appid while the EDU file may
contain packet SDUs from multiple appids. Second, the RBP file has a precise naming convention while
the EDU file does not.

To understand the contents of these products, see the following ICD:

EOS Data and Operations System (EDOS), CDRL B301, August 9, 1996.

For information about building scripts for the data products, see the following documents:

PDS.DOC
EDS.DOC
RBP.DOC
EDU.DOC

4.25 PDS AND EDS
This section describes how to make a Production Data Set (PDS) and an Expedited

4-51

Data Set (EDS), which may consist of multiple files. You should have your EOS
ICD open to table 8.1.2.7-1, PDS/EDS Construction Record, page 8-11, as you make

the script because most of the dataset output arguments directly affect the

construction record fields.

The PDS/EDS script contains the following components:

one PDS/EDS output (see below)
one mux if there are multiple packet streams (see MUX.DOC)
one or more packet streams (see PACKET.DOC)

Each packet stream produces packets for one appid. The PDS/EDS output assumes
all packet streams are from the same virtual channel.

If you wish to introduce gaps to a packet stream, either use the drop(ename)
argument in the packet stream statement, or insert bit errors in the packet
sequence field.

If you wish to introduce packet length errors, either insert bit errors in the
packet length field in the packet stream or make packets that do not match the
lengths specified in the output.

See PACKET.DOC in the Tiger reference documents for the packet statement syntax.

PDS/EDS OUTPUT
The PDS/EDS output engine creates the construction record file and the packet
data files. To create an EDS, use “output.eds.” To create a PDS, use
“output.pds.” The supporting output.eds.esh or output.pds.esh statement is
required. See PB5.DOC. The SCSstart and STSstop statements are optional and
define start and stop time segments, which it writes to the construction record.
One output.eds.appid or output.pds.appid statement is required for each appid.
It defines parameters for the appid, which must match a packet stream appid.

output.pds inStream(sname) fillEvent(ename) fill(0xnn:0xc9) -

KBperFile(n:0) max(n:0) major(n:0) minor(n:0) spid(n:42) -
create(n:97100050403) dscount(n:0)

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.pds.esh day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0) -

dayStep(n:0) secondsStep(n:1) milliStep(n:0) microStep(n:0) -
ramp(n:0) drift(n:0) driftFreq(n)

output.pds.SCSstart day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0)
output.pds.SCSstop day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0)

output.eds inStream(sname) quicklook(1or0) fillEvent(ename) fill(0xnn:0xc9) -

KBperFile(n:0) max(n:0) major(n:0) minor(n:0) spid(n:42) -

4-52

create(n:97100050403) dscount(n:0)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n) discardBadLenPkt(1or0:1)

output.eds.esh day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0) -

dayStep(n:0) secondsStep(n:1) milliStep(n:0) microStep(n:0) -
ramp(n:0) drift(n:0) driftFreq(n)

output.eds.SCSstart day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0)
output.eds.SCSstop day(n:0) seconds(n:0) milliseconds(n:0) microseconds(n:0)

quicklook(1or0)
Quicklook construction method. Required for EDS. The PDS output ignores it.
1= Make EDS based on quicklook flag in packet secondary header. The output
discards packets that do not have the quicklook flag set.
0= Make EDS from all packets, and ignore the quicklook flag.

inStream(sname)
Input stream name. Required. You must include a packet stream definition by
that name in the script. See PACKET.DOC. The input stream must provide packets
from one application id to satisfy the PDS/EDS requirements.

fillEvent(ename)
The construction record identifies short packets, which are packets that could
not be completely constructed and are missing trailing bytes. The packet
assembly system appends fill to short packets. This event points to a value
event. When the event is true, the output chops the corresponding packet to a
shorter length and replaces the lost data with fill. The occurrence is noted in
the construction record. The event value is the number of chopped bytes. If
fillEvent(ename) is omitted, then the PDS/EDS does not have any short packets.
See EVENT.DOC for event syntax.

fill(0xnn:0xc9)
This argument identifies the fill byte when fillEvent(ename) is used. The
default fill is 0xc9.

KBperFile(n:0)
A PDS/EDS consists of a construction record and one or more data files. This
argument defines how many kilobytes should be written to each data file. The
default is zero, which means the output writes all packets to a single data
file. Note that a data file may be slightly larger or smaller than expected
because the output engine does not split packets between files.

max(n:0)

Maximum number of packets that the output writes to the PDS/EDS before
terminating the scenario. The default is zero, which is unlimited. You must set
the max(n) argument in either the output or all packet streams to ensure that the
program stops.

major(n:0)
The construction record major version number. Default=0.

4-53

minor(n:0)
The construction record minor version number. Default=0.

spid(n:42)
Spacecraft id. Default=42.

create(n:97100050403)
The PDS/EDS creation date, which is part of the PDS/EDS name. The format is
“yydddhhmmss.” The default is day 100 of 1997, 5 hours, 4 minutes, and three
seconds.

dscount(n:0)
Data set counter, which is part of the PDS/EDS name. (It is the third from last
character.) Range= 0-9. Default=0.

output.pds.esh . . .
output.eds.esh . . .

Required. See PB5.DOC

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

output.eds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -
length(n) length1(n) length2(n) length3(n)

Each appid statement defines one PDS/EDS application id. You must have at least one and no more
than three. Each one must match a corresponding packet stream appid.

appid(n)
Packet application id, which is written to the construction record. It must match the application id from

an input packet stream. Required. rscPackets(n:0)

The construction record contains a field that counts the number of packets from

Reed Solomon correctable frames. This argument is that number. The default is zero.

vcid(n:0)
Virtual channel number. Default=3D0. Range=3D 0-62.

vcid2(n) Second virtual channel number. If omitted, then there is only one virtual channel for this
application id. Range=3D 0-62.

length(n)
length1(n)
length2(n)
length3(n)

Packet lengths in bytes. You may specify up to four acceptable packet lengths for

4-54

each application id. Range: 7-65,542 bytes. Packets with unacceptable lengths are identified as bad
length packets in the construction record. By default the output discards them. If you omit all length
arguments then, with one exception, all packet lengths within 7-65,542 bytes are acceptable. The
exception is the output will discard any packet whose internal packet length field does not

match the actual length as provided by the packet stream. It will do this regardless of the value or
existence of the length arguments.

Note: PDS Scripts created with previous versions of SCTGEN are not compatible with SCTGEN version
1.2. The following line must be added for each apid to run previously created scripts.

output.pds.appid id(n) rscPackets(n:0) vcid(n:0) vcid2(n) -

length(n) length1(n) length2(n) length3(n)

output.pds.SCSstart day(n:0) seconds(n:0) milliseconds(n:0)
microseconds(n:0)
output.pds.SCSstop day(n:0) seconds(n:0) milliseconds(n:0)
microseconds(n:0)

output.eds.SCSstart day(n:0) seconds(n:0) milliseconds(n:0)
microseconds(n:0)
output.eds.SCSstop day(n:0) seconds(n:0) milliseconds(n:0)
microseconds(n:0)

These PDS/EDS output statements define the spacecraft start and stop times,
which are written to the construction record. You should provide at least one pair.
You may specify more than one start and stop time pair. The output does not
check to see if the stop time is greater or less than the start time.

day(n:0)
Day from epoch. Range=3D 0-9999. Default=3D0.

seconds(n:0)
Range=3D 0-86399. Default=3D0.

milliseconds(n:0)
Range=3D 0-999. Default=3D0.

microseconds(n:0)
Range=3D 0-999. Default=3D0.

This example script makes an EDS with packet appids 1 and 2. Notice that the EDS output connects to
two packet streams. This script creates 250 packets. It puts no more than 10 kilobytes in one file. It
generates all of the possible error conditions, which are found in the construction record=. The EDS is
not constructed on the packet secondary header quicklook flag. (To do that, set quicklook(1) in
output.eds. Then in each packet stream, set quicklook(ename), and specify a unit event to identify which
packets have the quicklook flag set. The second packet stream shows how to do that. In this scenario, we
are putting all packets in the EDS, and we are ignoring the packet quicklook flag.)

This example etsp script makes a multi-file Expedited Data Set (EDS). It contains two appids. It is not
triggered by the quicklook flag.

#________________
output.eds inStream(merge) major(1) minor(2) KBperFile(10) quicklook(0)

spid(42) create(97101050403) dscount(1) fillEvent(fill)

4-55

fill(0x0) -
max(250)

output.eds.esh day(100) seconds(0) milliseconds(0) microseconds(0) -

dayStep(0) secondsStep(0) milliStep(100) microStep(50)

output.eds.appid id(1) rscPackets(25) vcid(1) vcid2(2)
output.eds.appid id(2) rscPackets(0) vcid(0)

output.eds.SCSstart day(100) seconds(500) milliseconds(50) microseconds(0)
output.eds.SCSstop day(100) seconds(1000) milliseconds(50) microseconds(0)
output.eds.SCSstart day(200) seconds(500) milliseconds(50) microseconds(0)
output.eds.SCSstop day(200) seconds(1000) milliseconds(50) microseconds(0)

event.value.fill.range uid0(1) uid1(4) v(16)

#________________
stream.mux.merge default(p1)
stream.mux.merge.recur start(1) skip(1) stream(p2)

#________________
stream.pkt.p1 appid(1) length(100) 2hdr(1) 2hdrLength(9) drop(drop)
stream.pkt.p1.region.data type(F) pattern(0x12)
stream.pkt.p1.region.2hdr type(tcEDOS)
stream.pkt.p1.error.flip label(lengthErr) event(lenErr) startbit(32)
bits(16)
event.unit.drop.range uid0(25) uid1(26)
event.unit.lenErr.range uid0(50) uid1(54)

#________________
stream.pkt.p2 appid(2) length(200) 2hdr(1) 2hdrLength(9)
stream.pkt.p2.region.data type(F) pattern(0x22)
stream.pkt.p2.region.2hdr type(tcEDOS)
stream.pkt.p2.region.2hdr type(tcEDOS) day(100) msOfDay(0) microOfMs(0)=
 -
msStep(1000) microStep(0) quicklook(qlevent)

event.unit.qlevent.recur start(1) skip(2)

This example script creates a multiple apid PDS from an external file. It is not triggered by the
quicklook flag. It contains 3 apids. This example uses the depot stream, which is discussed in Section
4.7 of this document. This example contains 2 SCSstart/stop time combinations. The fileType must be
specified as VPKT indicating variable packet lengths and the external filename used to create the PDS
is pkt.dat.

#______________________

main c(pds)

output.pds inStream(p1) major(1) minor(2) Kbperfile(16) quicklook(0) -=

spid(42) create(97101050403) dscount(0) fillEvent(fill)
fill(0xC9) -

max(300)
output.pds.esh day(100) seconds(0) milliseconds(0) microseconds(0) -

dayStep(0) secondsStep(0) milliStep(0)

4-56

microStep(50)

output.pds.appid id(0) vcid(1) length(200)
output.pds.appid id(1) vcid(1) length(300)
output.pds.appid id(2) vcid(1) length(400)

output.pds.SCSstart day(100) seconds(500) milliseconds(50) microseconds(0)
output.pds.SCSstop day(100) seconds(1000) milliseconds(50) microseconds(0)
output.pds.SCSstart day(200) seconds(500) milliseconds(50) microseconds(0)
output.pds.SCSstop day(200) seconds(1000) milliseconds(50) microseconds(0)

event.value.fill.range uid0(2) uid1(3) v(16)

#_____________________

stream.depot.p1 fileType(VPKT) device(d)
device.file.d name(pkt.dat) access®

4.26 SONY TAPE DEVICE

The SONY tape device allows your script to read or write directly to a SONY tape device. You may use
the SONY device statement anywhere that a device statement is permitted. However, you may specify
only one SONY device per script. Certain output products do not specify a device, so you must create
them on disk and later copy them to tape. Make sure the tape unit is ready before you run the script.
See DEVICE.DOC for device information.

device.sony.<name> name(file) access© tapeRecSize(n:1024) name(file) Name of file, which is written
to the tape directory. Required. access© Access mode. r=read, w=write. Required,
tapeRecSize(n:1024) The tape record size. This is not the unit size. Default=1024.

device.sony.<name> name(file) access© tapeRecSize(n:1024)

name(file)
Name of file, which is written to the tape directory. Required.

access©
Access mode. r=read, w=write. Required,

tapeRecSize(n:1024)
The tape record size. This is not the unit size. Default=1024.

4.27 SLIP STREAM

Slips units (usually frames, CADUs, or V1TFs) long or short.

stream.slip.<name> -

inStream(sname) long(ename) short(ename) -
longFill(n:0x0) shrink(1or0:0) fill(n:0x0) -
er(1or0:1) length(n:1024)

inStream(sname)
Input stream name. Required.

short(ename)

Event name of a value event that identifies which units by unit number are to be slipped short. The
event’s values are the number of slip bits, which must be between 1 and 32 bits. If short(ename) is

4-57

omitted, no units are slipped short, however you must specify either short(ename) or long(ename). The
stream will not slip the first input unit. See EVENT.DOC.

long(ename)

Event name of a value event that identifies which units by unit number are to be slipped long. The
event’s values are the number of slip bits, which must be between 1 and 32 bits. If long(ename) is
omitted, no units are slipped long, however you must specify either short(ename) or long(ename). If you
mark the same input to be slipped both long and short, then it slips the unit long and

ignores the short slip. See EVENT.DOC.

length(n:1024)
Block size. Min=512. The stream fills fixed size block with the slipped input units. You have little reason

to use other than the default.

shrink(1or0:0)

The last output block is often not completely filled. 1=trim the last block to the smallest byte length, filling
unused bits with zeroes. 0= fill unused bits and bytes with the fill pattern and do not shrink. Default=0.

fill(n:0x0)
Byte used as fill when shrink(0). The stream uses the least significant bits of fill to fill less than a byte.

Default=0.

longFill(n:0x0)
Pattern used when units are slipped long to fill the vacated hole. The stream uses the least significant

bits of longFill to fill less than a byte. Default=0.

er(1or0:1)
1=write message to expected results file to mark every slipped unit. 0=do not write slip events to the

expected results file. Default=1.

The slip stream slips units 1-32 bits, long or short, to test frame synchronization hardware and software.
The usual slip range is one to three bits. Note that bit slip is a time consuming job for the slip stream.

The unit counter for slip identification is the slip stream’s own input counter, and it may not be the same
as the unit id that the input streams create, especially if the input stream is a mux.

The usual practice is to connect the slip stream directly to an output. See OUTPUT.DOC. Then connect
the slip stream to a frame stream or frame mux, such as CADUs or V1TFs. The following script fragment
is an example.

output.plain inStream(main) max(1000)

stream.slip.main inStream(vcmux) long(evL) short(evS)
event.value.evL.recur start(10) skip(9) v(1)
event.value.EvS.range uid0(45) uid1(46) v(2)
event.value.EvS.range uid0(95) uid1(96) v(7)

stream.mux.vcmux.recur stream(vc0) start(1) span(2)
stream.mux.vcmux.recur stream(vc1) start(2) span(2)

The mux connects to some unidentified streams named vc0 and vc1. The slip stream slips every tenth
unit one bit long. It slips units 45 and 46 two bits short, and unit 95 and 96 seven bits short.

4.28 RATE BUFFERED FILE
output.rbp spid(n:42) appid(n) ground(name:WSG) time(n:97001010203) -

KBperFile(n:0) max(n:0) inStream(sname)

4-58

appid(n)
Required.

inStream(sname)
Required.

spid(n:42)

ground(name:WSG)
Required 3 characters.

time(n:97001010203)
Required 11 characters.

KBperFile(n:0)

max(n:0)
This example etsp script makes a Rate Buffered Packet file of 100 SDUs.

output.rbp inStream® ground(WSG) KBperFile(0) appid(320) spid(42) -

time(97001050403) max(50)

#__________________
stream.edu.r inStream(p) version(0) port(1) playback(0) -

capture(0) spid(42) vcid(0) vcduBreak(vcbrk) -
RSuncorr(vcbrk) RScs(evtr) fillEvent(fill) fill(0x00)

stream.edu.r.pb5 day(1) dayStep(0) seconds(2) milliseconds(3) -

microseconds(4) secondsStep(1) milliStep(2) microStep(3)

event.value.fill.range uid0(3) uid1(3) v(180)
event.unit.vcbrk.range uid0(2) uid1(2)
event.value.evtr.range uid0(4) uid1(4) v(10)

#__________________
stream.pkt.p appid(320) length(780) 2hdr(1) 2hdrLength(9) checksum(1) -

drop(drop)

stream.pkt.p.region.data type(U) wrap(0) format(S)
stream.pkt.p.region.data.data s0(appid=320 vcid=41 spid=42 len=780.)

stream.pkt.p.region.2hdr type(tcEDOS) day(200) msOfDay(0) microOfMs(0) -

msStep(100) microStep(0) ramp(0) drift(1) driftFreq(97)

stream.pkt.p.error.flip label(lengthErr) event(lenErr) startbit(32) bits(16)
event.unit.lenErr.range uid0(44) uid1(44)

event.unit.drop.range uid0(45) uid1(46)
event.unit.drop.range uid0(100) uid1(100)

5-1

SECTION 5
USER DETAILED SCRIPTING TUTORIAL

This section contains a detailed sequence of steps to suide the user through the scripting process in
creating data scenarios for generation. The GUI exemplifies the simple data generation and more
complex and non-ETS specific issues may be addressed by reading this section. This section is made
up of four sub-sections.

5.1 TIGER TUTORIAL: SIMPLE SCRIPT

Tiger is a collection of tools and libraries to make files of CCSDS units (packets, CADUs, V1TFs, CLTUs)
to be used to test telemetry or spacecraft command processing equipment. It does not transmit test data
to target equipment; you will need other software or hardware to do that. It only creates test data files.

Tiger is actually a framework for creating any type of unit. CCSDS is only one application. Programmers
can use the Tiger components to make their own applications. (This feature is unavailable at this time.)
This document focuses on the CCSDS application, which is called “tccsds,” and it does not present the
programming interfaces.

This document explains how to write scripts to make CCSDS units. It does not explain how CCSDS
works, but you must understand the CCSDS architecture to effectively use tccsds. You will need to read
the CCSDS blue books to get that background. You can find the blue books on the World Wide Web at

http://joy.gsfc.nasa.gov/CCSDS-DocLib.html

The Tiger CCSDS program is called “tccsds,” and there are SunOS/solaris and IBM PC versions. (We
will have an HP version later.) To run tccsds, type at the UNIX or DOS prompt:

tccsds <script_file_name>

If you type tccsds by itself, it will print the command syntax. Tccsds is a batch-like program, which does
not require any special graphics capabilities. It reads the script and produces an output test data file and
an expected results file. Sometimes a script will reference other input files. See caduSample.script and
caduSample.er for commented examples of each file type.

The script and the expected results file are text files that you can print or edit using any standard text
editor. The script file contains tccsds setup information. The expected results file is a signature of what is
in the corresponding binary test data file. We are currently developing GUI programs that handle both
files. The script GUI will let users create and edit scripts. The expected results GUI will let users see the
contents of a test data file in a friendlier manner.

Here is an example of a very user0 script. In this scenario, tccsds will make 1,000 packets and will write
them to a test data file. The file will be binary, and the packets will be back-to-back with no special
headers or trailers. (The dash lines are not part of the script. We will use them in this document to outline
a script listing.) All script file names should have the extension “script” or “scr.”

user0.script
A very user0 tccsds script that creates 1000 packets and writes them to
a test data file.

main c(cadu)

output.plain device(user0) inStream(Packets) max(0)
device.file.user0 name(user00.dat) access(w)

stream.pkt.Packets max(1000) appid(10) tc(0) length(50) 2hdr(0) -

checksum(0)

stream.pkt.Packets.region.data type(F) pattern(0x10)

5-2

*end

The “#” character in column one identifies a comment line. Tccsds ignores lines that begin with this
character. It also skips blank lines. Comments may not appear on lines that contain setup information.

The “*end” line marks the last line in a script. Tccsds will not process lines that follow it. “*end” is
optional, and we will omit it from all subsequent examples.

Script lines may be up to 512 characters in length. The “-“ character, when it is the last character in a
line, is a continuation character. Tccsds will join the primary line and all continuation lines into one logical
line, which we call a STATEMENT. This lets you split long statements so that they are more readable,
and it also lets you make statements that would exceed the 512 character limit. Continuation lines must
follow the primary line with no intervening statements, but intervening comment lines are ok.

A statement consists of two parts: a path and an argument list, which must appear in that order. White
space separates the two parts, and it also separates arguments. Do not put white space where it is
unexpected because it will confuse the parser and cause errors.

Case is always important. You must exactly match the case of paths and arguments specified in the
references. Be very careful of the case and spelling of paths and arguments in your scripts. Tccsds puts
the script into an internal database, and then the tccsds components independently fetch the arguments
they need. This means that tccsds is unaware if an optional argument is used or not, so it does not warn
you if you misspell one. For example, if you misspell the optional packet argument “2hdr” as “Hdr2,”
tccsds will not tell you that “Hdr2” s incorrect, and it will use the default value for the secondary header
option. If you construct a script that does not do what you want, always check the path and argument
spellings first.

Here are the paths from the example:

main
output.plain
device.file.user0
stream.pkt.Packets
stream.pkt.Packets.region.data

You might think of a path as a directory tree. Each “dot” subpath refines the subpath to its left, and you
might think of a subpath as a subdirectory. Do not insert white space inside a path string, but you may
precede it with white pace, and you must separate it from an argument list with white space.

The left-most subpath, the primary path, describes a general class of component, and only a few pre-
defined names exist. (Custom applications may dd additional primary paths, but this is unlikely.) Tccsds
recognizes the following primary paths:

main Tccsds demands that one main statement must exist. It defines the scenario type, which
is cadu, v1tf, or tc.

output Tccsds demands that one output statement must exist. It defines the format and device
of a scenario’s output file.

device Each device defines one input or output device. This could be a disk file, tape, or port.
stream Each stream defines a component that handles or makes units.
event Each event defines when something will happen based upon unit ids.

The next subpath to the right of the primary one, the secondary path, refines the primary path. Tccsds
recognizes only certain secondary paths, and your choices depend on the primary path. For example,
event accepts only unit or value as a secondary path. For streams, the secondary path is the stream
type. or example, “stream.pkt” defines a version one packet stream.

Subsequent subpaths further refine the path. For some paths, subsequent subpaths are pre-defined, and
in other cases the user may define any label the wishes. It always depends on the subpaths that precede
it.

5-3

The argument list, if it exists, follows the path and is separated from it by white space. Every path at
every level has a distinct, acceptable argument list, if any. Consult the reference material for the valid
arguments. Separate arguments with white space.

Each argument consists of a label immediately followed by a value field, which must be enclosed in
parentheses. The value field may not be blank. Do not separate the argument label from the value with
white space. For example,

“inStream(ap101)” is legal, and “inStream (ap101)” is not.

The case and spelling of the argument label must exactly match the case and spelling as defined in the
references. If a value field has only certain allowed string values, then it too must match in case and
spelling.

Depending on the argument label, a value field may be a string or a decimal or hexadecimal number. If
an argument expects a hexadecimal number, you may enter t as-is, or you may include a “0x” prefix. For
example, the “fill” argument requires a hexadecimal number. If you wanted to change the fill to
hexadecimal F7, you could write either fill(f7) or fill(0xf7). In the sample scripts and examples, we always
use the “0x” prefix to clearly show the value s hexadecimal and not decimal.

The user either picks string value fields from a pre-defined list, or he may enter any string of his choice.
It depends on the argument which one is expected. For example, the user type pattern loader lets the
user define in the script a string that tccsds will insert into the data region of packets. his string may
include almost any character including spaces. (This is one of the rare occasions when white space is not
treated as a separator.) However, do not put parenthesis inside a value string because it will confuse the
parser.

Let’s examine the sample script line by line. The first statement is:

main c(cadu)

CCSDS demands that main exists, and it may be anywhere in the script. It has no mandatory argument.
The value tells us that this is a CADU scenario as opposed to a V1TF or TC one. The scenario type tells
tccsds which stream types re allowed in the script. Since we are creating nothing but packets in this script
and packets are in all three scenario types, we could have used cadu, 1tf, or tc in this particular scenario.

Here are the allowed stream types for the three scenarios. The subpath is always the secondary path in a
stream definition as in “stream.pkt.” For custom applications, there are often additional types.

CADU - Telemetry
pkt Version one packets
pktCrate Version one packets
cadu CADU frames

5-4

V1TF - Version one transfer frame telemetry
pkt Version one packets
pktCrate Version one packets
segpkt Segmented packets
v1tf Version one transfer frames
master Version one transfer frames master channel

TC - Telecommanding
pkt Version one packets
pktCrate Version one packets
tcseg Telecommand segments
tctf Telecommand transfer frames
cltu Command link transmission units
tcphy Telecommand physical channel

The following stream types are Tiger core streams and are available in every scenario:

subpath description
mux Interleaves units from multiple streams into one stream
record Construct custom units through the script
depot Reads units from a file
frame Generic telemetry frame

The next two statements from user0.script describe the output. Tccsds demands that there be one output
statement, but other applications may allow more.

output.plain device(user0) inStream(Packets) max(0)
device.file.user0 name(user00.dat) access(w)

The secondary path describes the output format. You may choose from plain, fancy, files, sim, stgen,
and tdg. The sim, stgen, and tdg formats are for specific GSFC Code 521 boards, which transmit data to
test systems. The plain, fancy, and files formats have no specific target transmitter.

In the plain format, which we are using in the example, tccsds writes units back-to-back to a file with no
unit header or trailer or file header or trailer. The file is in binary format, and you will need to use a dump
tool such as the UNIX od to view it.

In the fancy format, tccsds writes the units in binary to a file, but each nit has a header, and sometimes
tccsds writes two copies of a unit, one with errors and one without. There is also a file header. Use the
fancy format when you are running a scenario in stages (i.e., separate runs of tccsds) and wish o create
intermediate files. The fancy format retains complete unit information, which the plain format does not.

The files format is a special enhancement of plain or fancy. With the files type, you specify a maximum
file size, and tccsds creates a set of files. No file in the set is bigger than the maximum size.

In the user0 example, we will create a plain format file. The device(user0) argument describes the kind
of output device. The value is a label to a device statement. Every output must be attached to at least
one device. The output module will get units to write to the device from the stream described by
nStream(Packets). “Packets” is a stream label. Every output must link to a stream. The last argument,
which is optional, defines the maximum number of nits that the output module will write. The default is
zero, which means unlimited, so we could have omitted this argument. In this case, the output module
will continue writing units to the device until the input streams provides no more. We have specified a
maximum in the packet stream description, but we could have just as easily specified the maximum in
the output description. Note that the other output types have different arguments, but every type must
attach to an input stream and to at least one output device.

Device is a Tiger primary path. It defines a kind of device, and Tiger uses it for either input or output.
The secondary path defines the device type. Currently, Tiger supports two types in its core library: file
and null. However, there may be additions, so check the references. Other device types might include
tapes and sockets.

5-5

The third subpath is the device label. You may choose any name for a device provided the name is
different from any other device label. You use the label o link the device to other components. In the
user0 scenario, we name the file device “user0,” and we specified device(user0) in the output statement
to link it to the device. A device may be linked to only one component.

We are defining a file device. The file device uses the UNIX or MSDOS file naming conventions, and it
is almost always a disk file. The name(user00.dat) argument says that our output file will be named
user00.dat. The access(w) argument says we are writing to the device. If it were access®, then tccsds
would expect to read the device. All devices require the access argument, but the other arguments
depend on the device type.

The null device discards all records when used as an output device. This device is useful when we are
first writing a script and we want to quickly test it without creating an actual output file. Typically, a user
would use the null device in his script to only get the expected results file. Once satisfied with the results,
change the device to a file device, and make the final run.

When used as an output device, you must specify access(w). When used as an input device, you must
specify access®, and you must specify the length of the file in bytes for which the null device is
substituting. For example, if you are using the null device for an input file that is 62,410 bytes long, then
you must specify length(62410) in the null device statement. If you use the wrong null, then your
expected results file will be inaccurate. The null device cannot be used as a substitute for all input
devices. You only may use it to substitute for a raw file pattern loader. (See references.)

The next statements in user0.script define a packet stream.

stream.pkt.Packets max(1000) appid(10) tc(0) length(50) 2hdr(0) checksum(0)
stream.pkt.Packets.region.data type(F) pattern(0x10)

A stream is a module that makes or handles units. A stream are the most common
component in a script.

Some streams act like factories because they create units of a particular type. For example, in CCSDS
we have packet streams and CADU streams, which respectively make packets and CADUs. Another
example of a factory stream is the record stream, which is a generic core stream. The record stream lets
you design and create custom units through the script.

Other streams read units from a file. For example, the depot stream, which is generic core stream,
reads units from a plain or fancy file. In addition, almost every CCSDS factory stream may be
commanded through the script to act as a depot instead.

Finally, there are utility streams such as the mux stream. The mux stream merges multiple input streams
into one output stream. In a CCSDS CADU scenario, we would use a mux to interleave the CADUs from
a group of virtual channel CADU streams. We discuss the mux stream in more detail in another section.

The user0 example creates a CCSDS version one packet stream. The setup says it will create 1,000
packets for application id 10. They will be telemetry packets with no secondary header. All packets will
bethe same length, which is 50 bytes long including the primary packet header. In every packet data
region, it will repeat the pattern 0x10. Here are the statements once again:

stream.pkt.Packets max(1000) appid(10) tc(0) length(50) 2hdr(0) checksum(0)
stream.pkt.Packets.region.data type(F) pattern(0x10)

The secondary path, which is “pkt,” identifies this as a CCSDS packet stream. the third subpath is a
label. We chose “Packets,” but we could have picked any name as long as it was different from any other
stream name. The label is for identification and linking. Notice that the output module is getting its
packets from inStream(Packets). The label links it to this packet stream.

The argument max(1000) restricts the stream to making at most 1,000 packets. The default to this
argument is zero, which means make unlimited packets. If we used max(0), then this stream would have
worked indefinitely or until some other condition caused it to stop.

5-6

The argument appid(10) says this packet stream is to make packets for application id 10, which it inserts
in that field of every packet. In a typical scenario, we would define a unique packet stream for every
application id. However, this is a practice and not a restriction. If needed, you may create more than one
packet stream with the same application id. The only difference between them need be the label.

The tc(0) argument says that this is not a telecommanding packet. That is the default, and we could have
omitted this argument. If this were a telecommanding scenario (main c(tc)), then we would want to set
this field to tc(1).

The length(50) argument says that all packets are to be 50 bytes long, which includes the packet primary
header. We could have chosen to create variable length packets. This requires different arguments and
additional statements; we will show an example in another section.

The 2hdr(0) argument says we do not want a secondary header in our packets. If we had set 2hdr(1),
then the stream would have put a secondary header in every packet. We would then need to define the
secondary header length, and we would need a statement to define the secondary header region. Also,
we could have specified an event as in 2hdr(event1). We would do this if we wanted to insert secondary
header in selected packets. We will show an example later after we have discussed events.

The checksum(0) argument says we do not want a checksum in every packet, which is the default. We
could have omitted this argument. If we had set checksum(1), then the packet stream would compute a
checksum for each packet by adding all bytes in the packet minus the last one (modulo 256), and it
would put it in the last byte of the packet. This can be a useful verification tool. After passing through a
target processing system, one could recompute and compare the checksums to check packet integrity.

The second packet stream statement introduces an important stream concept: the region. A region is an
area within a unit that is defined by a name, a start it, and a bit length. A unit may have any number of
regions. They may intersect, and they may change in location and size from unit to unit. Each unit type
recognizes a predefined set of regions. For example, a packet may have a data region and a secondary
header region. The existence of any region depends on stream arguments. In the user0 example, we
have a data region but no secondary header region. The importance of regions is that Tiger provides
several standard tools to fill them.

If a stream fills a region, then you must provide a region definition statement for it. The statement tells
the stream how it will fill the region. To compose a region definition, add the subpaths “region” and the
region name o the stream path. For example, the data region path for our packet stream is

“stream.pkt.Packets.region.data.”

If we had a secondary header, that path would be “stream.pkt.Packets.region.2hdr.” The region names
are predefined by the particular stream. (See the reference documentation.)

The data region definition for our packet stream is this:

stream.pkt.Packets.region.data type(F) pattern(0x10)

The type(F) argument says to fill the region with a repeating byte pattern. The pattern(0x10) says use
0x10 as the fill byte. Since we do not have a secondary header or checksum, the data region is the entire
packet minus the first six bytes, which is the primary header. If we had a secondary header, the data
region would begin with the first byte after the secondary header. Since our packet definition is complete,
we can show what the first packet would look like. Here is an ASCII dump in hexadecimal of the first
packet:

00000000: 000AC000 002B1010 10101010 10101010
00000010: 10101010 10101010 10101010 10101010
00000020: 10101010 10101010 10101010 10101010
00000030: 1010

Suppose we wanted a secondary header. As an example, let us rewrite the packet stream so that we
insert a seven byte secondary in every packet. Normally we would put an incrementing timecode in the
secondary header region, but for his example we will use the byte pattern 0xdd. Here is the complete
packet stream definition. Notice that we now have two region definitions. The statement order does not
matter. We will also enable the packet checksum in his example.

5-7

stream.pkt.Packets max(1000) appid(10) tc(0) length(50) 2hdr(1) -

2hdrLength(7) checksum(1)

stream.pkt.Packets.region.data type(F) pattern(0x10)
stream.pkt.Packets.region.2hdr type(F) pattern(0xdd)

The first packet from this setup will look like this:

00000000: 080AC000 002BDDDD DDDDDDDD DD101010
00000010: 10101010 10101010 10101010 10101010
00000020: 10101010 10101010 10101010 10101010
00000030: 105A

The Tiger core provides eight different ways to fill a region. Tccsds adds two more to insert CCSDS
timecodes. Other applications may add even more. The region fillers are called patterns or pattern
loaders.

A region statement’s arguments depend on the pattern. The type(name) argument, which is common to
all region statements, defines the region type. Here is a brief explanation of every pattern loader in the
Tiger core. See the core references for full details. The type is the argument value for the type(name)
argument.

Fixed Pattern (type F)

As shown in the simple example, this loader repeats the byte pattern in all bytes in the region.

stream.pkt.Packets.region.data type(F) pattern(0x10)

Random Pattern (type A)
The loader fills the region with random bytes. However, if you rerun the scenario on the same computer,

you will get the same results.

stream.pkt.Packets.region.data type(A)

Step Pattern (type S)

The loader fills the region with a step or ramp pattern. It continues from where it left off when it fills the
next region. You specify a start byte value in decimal, a repeat count, and a step value. The example
would generate the following string in a region: 01010101 03030303 05050505 07070707 09090909

stream.pkt.Packets.region.data type(S) start(1) step(2) repeat(3)

User Pattern (type U)

The loader fills the region with a string of values that are specified in the script. For this pattern, you must
add statements that define the values. You may specify the values in decimal, hexadecimal, or text, but
you may use only one format.

Raw File Pattern (type R)

The loader fills the region with data that it reads from a file. It continues reading bytes from the file to fill
subsequent regions. When it exhausts the file, it usually shuts down the stream, but it may continue
filling more regions with constant fill. The raw file pattern loader is a good way to fill packets or other
units with meaningful data.

Empty Pattern (type E)

The loader does nothing; the region is not filled. Most streams do not allow this type. It is useful when
more than one stream is constructing a unit, and one stream must reserve space that a subsequent
stream will fill. This happens in the V1TF scenario. The Master Channel stream fills empty regions that
the 1TF streams prepare.

Consumer Pattern (type C)

5-8

The loader gets units from an input stream and packs them into a target unit’s region. It can either put
integral units per region or it can stack them back-to-back, splitting units across regions if necessary. In
the V1TF and CADU scenarios, the frame stream uses this loader to put packets into its frames.

Inlay Pattern (type I)
This loader is similar to the consumer pattern except it puts only one input unit per region, so the region

must be at least as big as the input unit.

Under CCSDS, the following timecode patterns are available. They are almost always used in the packet
secondary header. The region lengths depend on timecode setup options. Each timecode automatically
increments by the step value every time the loader fills a region. See the CCSDS blue book on time
codes for format information. The pattern descriptions are in cscript.doc.

Day Segmented Timecode (type tcday)
Unsegmented Timecode (type tccuc)

5.2 TIGER TUTORIAL: MAKING CADUS

In the next example, we will expand the simple script by inserting a CADU stream into the data flow.
Packets will flow into a CADU stream, which fill flow into the output module. We will also show some
additional options, such as idle units and events.

user1.script
This CADU script makes 100 CADUs from a single packet stream.

main c(cadu)

device.file.simple1 name(simple1.dat) access(w)
output.plain device(simple1) inStream(frames) max(100)
#output.stgen inStream(frames) device(simple1) recordSize(1000) max(100)

stream.cadu.frames service(P) length(1000) vcid(0) spid(100) crc(1) -
frameSync(0x1acffc1d) idleEvent(idleFrame)

stream.cadu.frames.region.data type© inStream(ap10) lastUnit(I) -
ERcomposition(1)
event.unit.idleFrame.range uid0(1) uid1(4)

stream.pkt.ap10 appid(10) length(500) 2hdr(1) 2hdrLength(7) idleEvent(iap10)
stream.pkt.ap10.region.data type(U) wrap(0) format(S)
stream.pkt.ap10.region.data.data s0(This is text packet data for appid 10.)
stream.pkt.ap10.region.data.data s0(vcid=0 spid=100 CRC=on.)
stream.pkt.ap10.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(100)
event.value.iap10.recur start(10) skip(99) v(50)

This is a CADU scenario. The output statement says we are writing 100 units to the “simple1” device,
which is the plain file simple1.dat. This time the input stream is “frames,” which is a CADU stream.

We have included but commented out an alternate output. In the alternate, we are creating an STGEN
format output file. The STGEN format is for a GSFC Code 521 simulator board. The recordSize(1000)
argument tells the output module that the length of the records from “frames” is 1000 bytes, which is our
CADU length. The STGEN board has four megabytes of memory for test data, but we are only using 100
records (100,000 bytes) of it in this example.

The following statements define a CADU creation stream for one virtual channel. We would make more
of these if we had additional virtual channels. The first statement says the stream is doing the path
service. It could also do VCA/VCDU and bitstream services. Each CADU is 1,000 bytes long and is CRC
encoded. The stream is making CADUs for virtual channel zero. The spacecraft id is 100. We have
specified a sync pattern, but this was unnecessary because we have specified the default. Lastly, the first

5-9

statement identifies an idle event by name. The idle event tells the CADU stream when it should make
idle or fill CADUs. Some target processing systems lose one or more frames at the start of session until
they lock on the data, so we would like to start with a few idle frames to ensure the target does not
discard any packets.

stream.cadu.frames service(P) length(1000) vcid(0) spid(100) crc(1) - frameSync(0x1acffc1d)
idleEvent(idleFrame)

stream.cadu.frames.region.data type© inStream(ap10) lastUnit(I) - ERcomposition(1)
event.unit.idleFrame.range uid0(1) uid1(4)

CADU has three regions: a data region, an OCF (CLCW) region, and an insert one region. We have not
enabled the OCF or insert zone, so we must supply a region statement for the CADU data region only.
The second statement is the data region definition. It is type C, a consumer region, which means the
CADU stream will be packing units back-to-back into the data region. The input stream is the “ap10”
packet stream, so the CADU stream will be loading packets, splitting them across CADUs if necessary.

The lastUnit(I) argument says to put idle packets in the last CADU to fill it put in case we run out of
packets early. By default, the consumer loader fills with a constant byte pattern. The ap10 packet stream
does not shut down early in our example, but it is a good idea to provide the lastUnit(I) argument in case
we later change how we make packets.

The ERcomposition(1) argument tells the stream to write CADU composition information to the expected
results file. This output can get quite lengthy, so it is off by default. However, it is also quite useful
because it shows which packets are inside every CADU.

The third statement is an event statement, which the CADU stream references. Events are unique
entities that define when something should happen. Any number of streams may reference the same
event. The CADU stream uses this event to tell it when it should generate idle CADUs. The event is a
unit event, which means it gives only true and false information. It is a range event, and the range is unit
one through four inclusive. To the CADU stream, it means it should make idle CADUs for the first four
frames, frames #1 through #4.

The CADU stream get packets from “ap10.” This is our packet stream. It is making packets for
application id 10 with a constant total length of 500 bytes. It is putting a seven byte secondary header in
each packet, and it is also making a few idle packets.

stream.pkt.ap10 appid(10) length(500) 2hdr(1) 2hdrLength(7) idleEvent(iap10)

Since we turned on the secondary header, we must specify a secondary header region. Secondary
headers are often timecodes, so we choose the CCSDS Day segmented timecode. We need at least
seven bytes because the Day Segmented options demand it. If we had made the region larger, the
stream would put zeroes in the extra trailing bytes. We start the time at day 3,000 from epoch, and we
set the step size to 100 milliseconds. Every time the stream loads a secondary header, the timecode
pattern automatically increments by 100 milliseconds.

stream.pkt.ap10.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(100)

To fill the packet data region, we have selected the user pattern. This pattern demands that we provide
the data pattern in the script, so we must specify one or more “data” subpaths to the user region path.
We want to enter the data pattern as text, so we set format(S), which means “text string.” Our other
choices are format(H) for hexadecimal and format(D) for decimal.

stream.pkt.ap10.region.data type(U) wrap(0) format(S)
stream.pkt.ap10.region.data.data s0(This is text packet data for appid 10.)
stream.pkt.ap10.region.data.data s0(vcid=0 spid=100 CRC=on.)

The “data” subpaths may have arguments s0() through s9(), and we may have more than one statement.
For the D and H formats, each “s” argument specifies one byte. The user pattern constructs an array of
values by concatenating all “s” arguments into one list. The order depends on first the order of the data
statements and second on the order of the “s” arguments, s0() through s9(). If n “s” argument is missing,
it simply skips it. In the example, the user pattern constructs this string:

5-10

“This is text packet data for appid 10. vcid=0 spid=100 CRC=on. “

It will repeatedly copy this string to the data region until it completely fills t. Normally it will wrap any
leftover string into the next region, but the rap(0) argument tells it to discard any leftover and to start
every new region with the beginning of the string.

We decided to insert idle packets into the packet stream, so we included the idleEvent(iap10) argument,
and we provided an event statement. This statement tells the packet stream to make a fifty byte idle
packet and to insert it at unit ten and repeat it every 100th packet thereafter.

event.value.iap10.recur start(10) skip(99) v(50)

This is an example of a value event because it has a value field with each event statement in addition to
the true and false information that a unit event provides. Streams that only need the true/false
information can still use it; they simply ignore the value. For example, we could have used it in the
CADU stream to define when it should construct idle CADUs. It would have made 1,000 byte idle CADUs
every 100th CADU, and it would have ignored the v(50) argument.

A unit event is actually a degenerate value event. If used as a value event, a unit event gives a value of
one. If we had set idleEvent(idleFrame) in the packet stream definition, the packet stream would have
tried to create one byte packets, which is illegal and would have caused an error.

The example event is also a recurrent event. Both unit and value events may be either recurrent or
range events. A recurrent event defines a pattern that is repeated again and again.

5-11

5.3 TIGER TUTORIAL: ERRORS
So far, we have created only clean data files. In this example, we will insert errors into some of the
packets and CADUs. This is a CADU scenario. We write plain units (CADUs) to the file “user2.dat.”

user2.script
This CADU script makes 100 CADUs from a single packet stream.
In this example, we insert errors into both streams.

main c(cadu)

device.file.user2 name(user2.dat) access(w)
output.plain device(user2) inStream(vc0) max(100)

stream.cadu.vc0 service(P) vcid(0) spid(100) idleEvent(vc0i) drop(drop) -

RSencode(1) RSinterleave(4) RScodeLength(255)

stream.cadu.vc0.region.data type© inStream(ap10) lastUnit(I) ERcomposition(1)
stream.cadu.vc0.error.set convey(1) label(VCerror) event(vc0e1) -

startbit(42) bits(6) v(60)
stream.cadu.vc0.error.set convey(0) label(SCerror) event(vc0e2) -

startbit(34) bits(8)
event.unit.drop.range uid0(25) uid1(25)
event.unit.vc0e1.range uid0(90) uid1(90)
event.value.vc0e2.range uid0(90) uid1(90) v(77)
event.value.vc0e2.range uid0(92) uid1(93) v(55)
event.unit.vc0i.range uid0(1) uid1(1)
event.unit.vc0i.range uid0(100) uid1(100)

stream.pkt.ap10 appid(10) length(500) 2hdr(1) 2hdrLength(7)
stream.pkt.ap10.region.data type(U) wrap(0) format(S)
stream.pkt.ap10.region.data.data s0(This is text packet data for appid 10.)
stream.pkt.ap10.region.data.data s0(vcid=0 spid=100 RS=4,255.)
stream.pkt.ap10.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(100)
stream.pkt.ap10.error.add convey(0) label(+1seq) event(ap10e1) -

startbit(18) bits(14) v(1)
stream.pkt.ap10.error.flip convey(0) label(appidErr) event(ap10e2) -

startbit(5) bits(1)
event.unit.ap10e1.range uid0(2) uid1(5)
event.unit.ap10e2.range uid0(10) uid1(13)
event.unit.ap10e2.recur start(50) repeat(1) skip(4) occur(3)

In the “vc0” CADU stream, we are Reed-Solomon (RS) encoding the frames instead of CRC encoding
them. RSencode(1) enables RS encoding and automatically disables CRC encoding by default. (It is
legal, but unusual, to have both encoding methods enabled simultaneously. The RS parity would follow
the CRC parity in the frame.) RSinterleave(4) sets the interleave to four in this example. Popular
choices are one through five. RScodeLength(255) is the codeword length. The maximum value is 255.

There are two additional RS arguments for which we used the defaults. RSdual(1) enables or disables
dual mode. The CCSDS standard uses dual mode, so this argument should always be enabled (and is
by default). RSempty(0) is another boolean argument. When enabled, it leaves space for the RS parity,
but it does not compute it. RSempty(0) is the default, which is to compute the parity. RS encoding is
expensive in terms of CPU time. For interleave four and codeword length 255, over 80% of tccsds’ time
is in RS encoding. You might choose to set RSempty(1) when you are dry running a script or you are
transmitting the test file through hardware that does the encoding for you.

5-12

Notice that we did not specify the length(n) argument. When RS encoding, the frame length derives
from the RS parameters. If we specified a length, tccsds would either ignore it or would warn us if it did
not match the computed value. To compute the frame length when RS encoding, multiply the interleave
by the codeword length and add four for the synchronization pattern. In our example the frame length is
1024 (4 X 255 + 4).

Most spacecrafts desire a frame length that is a multiple of four, and the requirements may specify
“virtual fill” to achieve it. To handle virtual fill, simply subtract the number of bytes of virtual fill from the
maximum codeword length (255) and use that as the codeword length value. For example, a popular
frame length is 256 bytes at interleave one and three bytes of virtual fill. To create these CADUs, set
RSinterleave(1) and RScodeLength(252) (1 X 252 + 4).

In the “vc0” CADU stream, we are demonstrating a more complicated use of an event. We have
specified idleEvent(vc0i), which identifies when we want to insert idle CADUs into the stream. The “vc0i”
event has two statements:

event.unit.vc0i.range uid0(1) uid1(1)
event.unit.vc0i.range uid0(100) uid1(100)

In this case, we want CADUs #1 and #100 to be idle. Notice that we may create composite events by
writing more than one event statement with the same name. An event may consist of any number of
range and recurrent statements. For value events, each statement may have its own v(n) value
argument.

Sometimes it is important to know the order in which tccsds checks the statements in an event. This is
especially true when each event statement has its own value argument. Tccsds always checks range
events before recur events no matter how they listed in the script. Within range or recur events, tccsds
checks them in the order that they are listed in the script. To avoid confusing a reader, alway put range
statements ahead of recur statements in an event definition.

In the “vc0” CADU stream, we decided to discard the 25th frame, which will create a virtual channel gap
and a packet sequence gap. To accomplish this, we have specified the drop(vc0d) argument. “vc0d” is a
ranged, unit event, and it specifies the range 25 to 25. The drop argument is available to all streams
and is not just a CADU stream argument.

The effects of dropping CADU #25 are reflected in the expected results file for this scenario. (See
caduSample.er for an annotated expected results file.) Here are the significant lines:

 c 1 uid=24 fhp=52 2.39 2.40 2.41 last=332
 c 1 uid=25 fhp=168 2.41 2.42 2.43 last=216
 drop 1 uid=25
 c 1 uid=26 fhp=284 2.43 2.44 2.45 lsat=100
 gap 1 uid=26 actual=24 expected=23 gap=1

Packet #41 will be a partial packet. The first 332 bytes will be available, but the last 168 bytes will be
missing. Packet #42 will be missing. Packet #43 is also partial, but here the first 216 bytes will be
missing, which includes the packet header. The target system will probably be able to handle packet
#41, but packet #43 is likely a lost cause because the primary header is missing. The net result is
probably a gap of two packets. Note that the expected results file predicts a CADU gap but not a packet
gap. The reason is we made the gap in the CADU stream, so the packet stream is unaware of data loss.
(It is too late for it to report it.) Also, the CADU stream uses core tools to fill its regions, so it knows very
little about the input units. The “actual” and “expected” numbers in the CADU gap report are virtual
channel sequence numbers.

To introduce bit errors into a stream, we use error statements. Append “error” and an error type to the
stream path. There are four different error types:

 set deposits a 1-32 bit value in a unit. The new value replaces the old one.
 add adds a 1-32 bit value to an existing 1-32 bit value in a unit.
 flip inverts any number of contiguous bits in a unit.

5-13

flipmask inverts 1-32 bits in a unit controlled by a 32 bit mask. Ones in the mask designate bits to be
flipped. Zeroes in the mask designate bits not to be flipped.

We are inserting two different errors in the CADU stream. Each error consist of an error statement and
an event. (We do not need a unique event for every error. One event may may be referenced by
multiple components.) Here is the first error specification:

stream.cadu.vc0.error.set convey(1) label(VCerror) event(vc0e1) - startbit(42) bits(6) v(60)
event.unit.vc0e1.range uid0(90) uid1(90)

These statements tell tccsds to deposit the value 60 in the 90th CADU starting at bit 42 and extending for
six bits. (Bit zero is the first bit and corresponds to the first bit of the synchronization pattern.) Bits 42-47
is the virtual channel id, so we are overwriting the CADU’s valid virtual channel with virtual channel 60.

The label(VCerror) argument has no control function and is merely an explantory message that the
stream writes to the expected results file.

The convey(n) argument is a boolean argument that tells tccsds whether or not to convey the error onto
the next receiving stream. When on (convey(1)), the receiving stream and all subsequent receiving
streams would show the error in the appropriate unit. Each stream applies the error AFTER doing any
encoding. For example, suppose a packet stream fed packets into a CADU stream, which fed CADUs
into a NASCOM block stream. Also suppose the CADU stream only did CRC encoding. Now suppose we
insert a bit error in the tenth packet. Then the expected results file would mark the affected packet and
any CADU or NASCOM block containing any portion of the packet as having an error. Furthermore, the
target system should report a CRC in the frame and a poly error in the NASCOM block that contained
the bit error because errors are applied after encoding when convey(1) is set.

When off (convey(0)), the stream hides the error, and all subsequent streams behave as if no error had
occurred. At the packet level, the behavior is as if the error occurred at the instrument. The streams
apply errors BEFORE they do any encoding. This means if the encoding algorithm is a correcting one,
such as Reed-Solomon encoding, then the target system’s RS decoder will not correct the error
because it won’t believe there is one.

So in the example, will the target system see virtual channel 60 in the 90th CADU? The answer is no,
assuming the target has a RS decoder. Since we have set convey(1), the stream applied the error after
it had RS encoded the frame. This means the target system’s RS decoder should detect and correct the
error, which means subsequent processors will see the correct virtual channel id and not our deposited
value.

In general, if the target system has a correcting decoder, then you should almost always set convey(0) in
all streams so that the encoder does the encoding after any errors are applied. Otherwise, the decoder
will probably fix the error, and your carefully planned error scenario will be wasted. Set convey(1) if your
test is check out the decoding functions of the target system.

The second error in “vc0” tells it to deposit 77 into the spacecraft id field, which is bits 34-41, for CADU
#90. It also deposits 55 into the spacecraft id field for CADUS #92 and #93. This error is not conveyed,
so the Reed-Solomon decoder will not correct it.

stream.cadu.vc0.error.set convey(0) label(SCerror) event(vc0e2) - startbit(34) bits(8)
event.value.vc0e2.range uid0(90) uid1(90) v(77)
event.value.vc0e2.range uid0(92) uid1(93) v(55)

Notice that we have omitted the error statement’s v(n) argument and instead have used a value event. If
an error that expects a value has no v(n) argument, it uses the value provided by the event. Using a
value event, we can deposit more than one value using one error statement as we have done in the
example. Had we mistakenly used a unit event, then tccsds would have deposited “one” in the
spacecraft id, which is a unit event’s value.

The packet stream is the same as in the previous example except we now add errors. There are two
errors in this stream. Here is the first:

stream.pkt.ap10.error.add convey(0) label(+2seq) event(ap10e1) - startbit(18) bits(14) v(1)
event.unit.ap10e1.range uid0(2) uid1(5)

5-14

For packets two through five inclusive, the stream will add one to whatever is in the packet’s sequence
field. This will cause two gaps in the sequence count. The error is not conveyed, so the Reed-Solomon
decoder will not correct it. If the new sum is greater than the target field’s maximum value, the stream
removes bits until it fits.

In the second error, the packet stream is using the flip error type. It will invert the most signficant bit of
the application id for ten packets, which the event “ap10e2” describes.

stream.pkt.ap10.error.flip convey(0) label(appidErr) event(ap10e2) - startbit(5) bits(1)
event.unit.ap10e2.range uid0(10) uid1(13)
event.unit.ap10e2.recur start(50) repeat(1) skip(4) occur(3)

This composite event contains both a range and recurrent event. The first statement causes the error to
be applied to packets 10-13. The second statement causes the error to be applied to packets 50, 51, 56,
57, and 62, 63.

5.4 TIGER TUTORIAL: MUX

In the previous scenarios, we created CADUs for one virtual channel, and that stream got packets from
only one packet stream. In this scenario, we show how to merge CADU streams and packet streams
using the mux stream. The mux stream is a Tiger core stream that interleaves units from multiple input
streams. In this example script, we merge two CADU streams representing virtual channel 0 and virtual
channel 1. For the “vc0” CADU stream, we use a mux stream to get packets from the “ap10” and “ap20”
packet streams.

The dataflow in this scenario is as follows: Packet streams “ap10” and “ap20” flow into a mux, which
flows into the CADU stream “vc0.” Then the CADU streams “vc0” and “vc1” flow into another mux
stream, which flows into the output module.

We demonstrate several other new features in this scenario: a VCA/VCDU service CADU stream, the
OCF (CLCW) CADU region, variable length packets, and filling a region from a data file.

user3.script
This CADU script makes 100 CADUs from multiple CADU and packet streams.
vcid 0 is path service. Packet streams ap10 and ap20.
vcid 1 is vca/vcdu service.
Other scenario features: OCF (CLCW) in CADU and variable length packets.

main c(cadu)

device.file.user3 name(user3.dat) access(w)
output.plain device(user3) inStream(vc) max(100)

stream.mux.vc default(vc0) idle(vc0) eos(S) er(1)
stream.mux.vc.range uid0(1) uid1(1) idle(8192)
stream.mux.vc.recur start(1) skip(1) stream(vc0)
stream.mux.vc.recur start(2) skip(1) stream(vc1)

stream.cadu.vc1 service(V) vcid(1) spid(100) RSencode(1) RSinterleave(4) - RScodeLength(255) ocf(1)
stream.cadu.vc1.region.data type® device(vc1file) fill(0) extendPastEOF(0)
stream.cadu.vc1.region.ocf type(U) wrap(0) format(H)
stream.cadu.vc1.region.ocf.data s1(0x01) s2(0xfc) s3(0x30) s4(0x19)
device.file.vc1file name(user3.doc) access®

stream.cadu.vc0 service(P) vcid(0) spid(100) RSencode(1) RSinterleave(4) - RScodeLength(255)

stream.cadu.vc0.region.data type© inStream(vc0mux) lastUnit(I) - ERcomposition(1)

5-15

stream.mux.vc0mux default(ap10) idle(ap10)
stream.mux.vc0mux.recur start(1) repeat(49) span(100) stream(ap10)
stream.mux.vc0mux.recur start(50) repeat(49) span(100) stream(ap20)

stream.pkt.ap10 appid(10) length(500) 2hdr(1) 2hdrLength(7)
stream.pkt.ap10.region.data type(U) wrap(0) format(S)
stream.pkt.ap10.region.data.data s0(appid=10 vcid=0 spid=100.)
stream.pkt.ap10.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(100)

stream.pkt.ap20 appid(20) variableLength(1) varLenEvent(var20) 2hdr(1) - 2hdrLength(7)
stream.pkt.ap20.region.data type(U) wrap(0) format(S)
stream.pkt.ap20.region.data.data s0(appid=20 vcid=0 spid=100.)
stream.pkt.ap20.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(200)
event.value.var20.recur v(120) start(1) span(5)
event.value.var20.recur v(291) start(2) span(5) repeat(1)
event.value.var20.recur v(816) start(4) span(5)
event.value.var20.recur v(620) start(5) span(5) occur(8)
event.value.var20 default(64)

The output module in this scenario gets units from the “vc” stream, which is a mux stream and not a
CADU stream. No stream other than a mux can get units from multiple input streams, so you must use a
mux to merge them first. We use two mux streams in this scenario. In the first one, we are interleaving
CADUs from two different CADU streams, each one representing a different virtual channel.

Note: Although we define a separate CADU stream for each virtual channel and a separate packet
stream for each application id, this is a practical application and not a required one. You may even
construct streams that are identical in all respects. Remember, though, that each stream is an
independent entity that is unaware of any duplicate’s behavior.

The primary script setups for a mux are the names of the input streams and how it should interleave
their units. The mux uses the event architecture to do this. The “vc” mux definition says to make the first
CADU an idle one and then to alternate between the two virtual channels.

The range statement causes the first CADU to be idle. The idle(8192) argument defines the idle CADU.
The value is the unit length in bits. Since CADUs are all the same size, tccsds ignores the value.
However, a value is required, so we must enter some number. The actual value in this case does not
matter.

The third and fourth statements define input streams and when the mux should get their units. In this
case, the mux will get CADUs from “vc0” on all odd numbered CADUs and from “vc1” on all even
numbered CADUs. Although the “vc0” statement says to start “vc0” with the first unit, the mux will make
an idle for the first unit because the range statement has precedence over any recur statement.

stream.mux.vc default(vc0) idle(vc0) eos(S) er(1)
stream.mux.vc.range uid0(1) uid1(1) idle(8192)
stream.mux.vc.recur start(1) skip(1) stream(vc0)
stream.mux.vc.recur start(2) skip(1) stream(vc1)

Although we show one statement per CADU stream, it is legal to use the same stream name in more
than one statement. We would do this to make addition unit definitions for an input stream.

The “stream.mux.vc” statement shows several mux arguments. The default(vc0) argument tells the mux
to use “vc0” if for some reason a unit id is not in one of the range or recur statements. The mux will also
use the default stream if an input stream does not give a unit when asked and eos(S) is set. This
happens in our example for “vc1” because that stream only creates a limited number of CADUs. When
the mux exhausts the supply of “vc1” CADUs, it will switch to the default (“vc0”) whenever it is supposed
to get a “vc1” CADU. If the default stream runs out of units or the default() argument is undefined when
needed, then the mux will terminate, which probably will end the scenario.

5-16

The eos(S) argument tells the mux what to do if any input stream does not give a unit. The “S” value
tells the mux to skip the stream and to use the default stream for a substitute unit instead. Other choices
are “I” and “X.” “I” causes the mux to request an idle unit as a substitute. “X” causes the mux to
terminate immediately.

The idle(vc0) argument tells the mux where to go to get idle units if needed. In the example script, the
mux will ask “vc0” to provide idle CADUs. In most cases, any input stream of the right type will suffice. It
does not even have to provide regular units to the mux, and you may create a stream just to provide
them. In the example,we could have selected “vc1” just as easily as “vc0.” The fact that a stream has
been asked to provide idles does not affect its normal unit production. For CADUs, all idles will be virtual
channel 63 regardless of the provider’s virtual channel.

Warning: Sometimes it DOES matter who provides idles. If a CADU stream has an insert zone, then all
idles it creates will also have an insert zone. Also, if a CADU stream has the replay flag on, then all idles
it creates will also have the replay flag on.

The er(1) argument causes the mux to write information to the expected results file. The file will show
exactly how the units have been interleaved. This option can create a large file, so the option is off by
default. You may also supply an event name as a value to er(). The mux will then write information only
for the selected units.

The technique of using event statements to define a mux’s interleave strategy is called strategy A. For
complex scenarios, the number of mux event statements can get relatively large. The mux allows a
second strategy, strategy F, to define the interleave order. Under strategy F, the mux gets the
interleave order from a text file, which simply lists streams in the correct interleave order. Using any text
editor, write one stream name per line, left-justfied. To insert an idle unit, insert the word “idle” on a line
by itself. When the mux reaches the end of the file, it restarts from the beginning. To use strategy F,
specify strategy(F) and a file argument in the “stream.mux.name” statement. See the mux reference for
details.

The muxtool program is a tool that creates mux strategy F files. You first create a small muxtool input
file that lists stream names and the percentage of their occurrence. (See muxtool.doc for format
information.) Then run muxtool with the file, and it creates the strategy F file. For example, suppose
you wanted to interleave three virtual channels so that the streams would be distributed as follows:

 vc0 25%
 vc1 60%
 vc2 14%
 idle 1%

You would create a small muxtool input file with these numbers. Muxtool would then make a 100-line file
(100 by default but you may create different length spans) such that the idles and streams would be
evenly distributed over the span. You could then edit the strategy F file to add or remove entries.

The “vc1” CADU stream performs the VCA/VCDU frame service, so it does not get packets from packet
streams. The tccsds program combines the VCA and VCDU services because they are identical at the
generation end. The bitstream service (service(B)) is very similar. The primary difference between the
VCA/VCDU service and the path service setup is that we attach the data region to a different pattern
loader and not to a packet stream.

stream.cadu.vc1 service(V) vcid(1) spid(100) RSencode(1) RSinterleave(4) - RScodeLength(255) ocf(1)
stream.cadu.vc1.region.data type® device(vc1file) fill(0) extendPastEOF(0)
stream.cadu.vc1.region.ocf type(U) wrap(0) format(H)
stream.cadu.vc1.region.ocf.data s1(0x01) s2(0xfc) s3(0x30) s4(0x19)
device.file.vc1file name(user3.doc) access®

We have selected a file (called a raw file in the reference) to be the filler for the CADU data region. The
file may be text or binary, and for the example we have chosen this document. The CADU stream will
create an ordered list of CADUs with each one containing a fragment of this document in the data
region. A target system should be able to reconstruct our original file from the CADUs.

5-17

Since a file has finite length, streams using a raw file loader usually make a finite number of units. It is
likely that the loader will not exactly fill the last CADU. If that happens, it writes a constant fill pattern to
finish the last region. The fill(0) argument tells the loader to fill out the last region with zeroes. (The
default fill is 0xc9.) The extendPastEOF(0) tells the loader not to continue making CADUs after it has
finished the file. When it has consumed the entire document, it will stop. If we had enabled
extendPastEOF, then the stream would have continued making CADUs. The data region of every extra
CADU would be all zeroes, which we specified in fill(0).

The ocf(1) argument tells the CADU stream that it should put the Operational Control Field, which is a
command echo and also known as CLCW, in every CADU. The tccsds program treats the four byte OCF
as another region, so we must specify an OCF region statement. Currently there is no special OCF
pattern, so we must choose one of the standard patterns. In the example, we have decided to fill each
OCF with the user pattern 0x01fc3019. If you need to create a more realistic OCF that changes with
time, the best solution is to create a binary file of consecutive, four-byte OCFs. Then use the raw file
pattern as we did in the data region to fill the OCF region.

Note that the OCF is dedicated to one virtual channel in this scenario. There is no CADU stream, like
the master channel stream in version one transfer frames, that inserts OCFs into the CADUs after they
have been interleaved into one stream. However, it can be done by using the record stream. See the
record stream references for more information.

The “vc0” CADU stream is almost the same as our other examples except it get packets from a mux
instead of a packet stream directly. The setup for this packet mux is similar to the first one we
examined.

stream.mux.vc0mux default(ap10) idle(ap10)
stream.mux.vc0mux.recur start(1) repeat(49) span(100) stream(ap10)
stream.mux.vc0mux.recur start(50) repeat(49) span(100) stream(ap20)

This mux interleaves packets from the “ap10” and “ap20” streams. It toggles between blocks of fifty
packets from each one. If it must get an idle packet, it gets it from “ap10.” If either packet stream runs
out of packets, “vc0mux” goes to “ap10,” and if that runs out, it terminates.

The “ap10” packet stream is nearly identical to packet streams we have examined. However, “ap20” has
something new. It generates variable length packets.

stream.pkt.ap20 appid(20) variableLength(1) varLenEvent(var20) 2hdr(1) - 2hdrLength(7)
stream.pkt.ap20.region.data type(U) wrap(0) format(S)
stream.pkt.ap20.region.data.data s0(appid=20 vcid=0 spid=100.)
stream.pkt.ap20.region.2hdr type(tcday) day(3000) 16BitsDay(1) msStep(200)
event.value.var20.recur v(120) start(1) span(5)
event.value.var20.recur v(291) start(2) span(5) repeat(1)
event.value.var20.recur v(816) start(4) span(5)
event.value.var20.recur v(620) start(5) span(5) occur(8)
event.value.var20 default(64)

The variableLength(1) argument identifies variable length packets, and varLenEvent(var20) identifies a
value event whose values are the packet lengths. In most of the events that we have used so far, the
users have been primarily interested in the true/false nature of the event. This is a case where the
stream only cares about the values.

The “ap20” stream creates packets in five different lengths. (The length is a total packet length and
includes the primary packet header.) The length pattern is 120, 291, 291, 816, and 620 bytes. Notice
that there are two packets of 291 bytes in each set of five. Also, the 620 byte packet only occurs eight
times, so the stream substitutes the default, 64 bytes, for the 620 byte packet after the eighth one.

6-1

SECTION 6
EXAMPLES OF SCRIPTS AND DATA GENERATION

In this Tiger script, we will create 1,000 CADUs, and we will write them to a plain, binary file called
“cadulist.dat.” This scenario models the following situation:

 vc appid pktLength
 17 256 332
 17 257 340
 17 258 128
18 259 784
18 260 392
18 261 128
23 262 964
23 263 944
30 265 332
30 266 340
30 267 128
41 320 780
41 321 580
41 322 560
41 323 572
41 324 571
42 67 642
42 68 642
42 69 276
11 11 64
2 frame service

The packet length includes the six byte primary header. All packets will have a secondary header. We
choose to put CCSDS unsegmented time in the secondary header location. It will consist of the optional
pfield, two bytes of coarse time, and three bytes of fine time, which makes a six byte secondary header.
We will fill each packet with a constant pattern, which will be different for each application id. Finally, we
will put a checksum in the last byte of each packet, which is the sum of all previous bytes modulo 256.
We could use this checksum in post-processing to verify proper packet construction.

All frames (CADUs) are 1024 bytes long and are Reed-Solomon encoded with interleave 4 and codeword
length of 255. Each frame has a four-byte sync pattern of 0x1acffc1d. (This combination of interleave
and codeword lengthforces 1020 byte frames. The sync pattern makes it 1024 bytes.) We are not adding
the OCF field (CLCW), insert zone, or any inversion or pseudo-noise

encoding.

The script shows a number of streams. Each one either constructs or handles a unit (packet, frame, etc).
Although we have listed the streams from CADU makers down to packet makers, the order is not
important, and you can arrange them in any order you like. Notice that we have linked the streams
together using a “stream” or “inStream” field. For example, the vc17 stream links to a vc17 mux, which
interleaves packets from the ap256, ap257, and ap258

streams.

A stream definition consists of a “dot string,” such as “stream.mux.top”followed by an argument list. The
individual fields in the “dot string” are called paths. The “stream” path identifies a mechanism that makes
or handles units such as packets. The second path identifies the kind of stream. These are predefined
names such as “mux” or “cadu.” Case is important. The third path is a user-selected label that uniquely
identifies the stream. No other stream may have the same name. We use the label to link streams

6-2

together. You may choose any name except “idle” which has special meaning. Also, avoid special
characters such as dot, parenthesis, and dash.

The “main” line is mandatory. The single argument “c()” identifies which of the three CCSDS basic
scenarios we wish to run. In this example, we are doing the “cadu” scenario. We could also do “v1tf”
(version one transfer frames) or “tc” (telecommanding). Each basic scenario has its own collection of
unique streams.

There must be one output defined. In the example, the output is a plain binary file. Output is writing up to
1,000 records to the “out” device, and it is getting records from the stream named “main.” There are
several different output formats that we could have used, and the device line allows us to choose
different types of output devices. In the example, we have commented out a substitute device, the null
device. The null device discards all records, and we use it to test our script and to get an expected
results file before we run the real scenario.

main c(cadu)
output.plain device(out) inStream(top) max(1000)
device.file.out name(cadulist.dat) access(w)
device.null.out name(cadulist.dat) access(w)

A mux stream merges unit from multiple input streams into one output stream. The following mux
stream interleaves CADUs from the virtual channel CADU streams. This example is taken from an actual
test. The user wanted to create an interleave pattern for the first 100 frames and then to repeat it
thereafter. The mux setup is more complicated than usual, and the user may have instead chosen to
have the mux use an input file. (See muxtool.doc to see how that is done.) For examples of simpler
muxes, see the packet muxes below.

The name “top” is not particularly significant, and we could have chosen any name as long as it was
unique. (Case is important.) Its only purpose is as a tag so that we can link streams together.

The first fourteen frames out of this mux will be (by vcid): idle, 17, 17, 30, 30, 18, 18, 42, 42, 17, 17, 30,
30, 41. This mux consists of a number of recurrent patterns. For example, line #3 tells us vcid 17 starts
with the second output frame and repeats once. This means that output frames 2 and 3 will be from the
input stream “vc17.” The “span(100)” argument says to do it again every 100 frames, so vc17 will occur
again at frames 102 and 103, 202 and 203, and so on. Line #4 says that frames 4 and 5 will come from
vcid 30, and line #5 says frames 6 and 7 will come from vcid 18. The remaining “recur” lines define vcids
for the remaining frames in the scenario. There is another way to specify units other than recurrent
patterns. This is by unit range; see a packet mux for an example.

The second line defines an idle frame. (There are other idle definitions in the list.) It says the first frame
is idle, and so is 101, 201, 301, etc. The idle argument, which is zero, is the bit length of the idle frame.
Since all idle frames are the same fixed size, Tiger ignores the value, but it must exist.

The first line has three fields. “er(1)” turns on expected results output. The expected results file will
contain unit ids (frame numbers) and corresponding vcids for all 1,000 frames. By default, this is off.

“default(vc17)” tells the mux to use input stream “vc17” if a unit id is undefined. For example, the mux
would use the default if we forgot to identify an input stream for the 100th frame. It would also use the
default if an input stream ran out of frames. For example, if we programmed “vc30” to only make 10
frames, the mux would get frames from the default for “vc30” after it used up the 10 frames. If we did not
specify a default or if the default itself ran out of units, then the mux would terminate upon its next
attempt to get a unit from the default.

“idle(vc17)” tells the mux from which stream to get idle units. Most of the time it does not matter which
stream provides because they all can make idles. However, if we chose a CADU stream that used an
insert zone, then all idles from that stream would also have an insert zone. For our example, no CADU
stream is using the insert zone, so any CADU stream will do.

stream.mux.top idle(vc17) er(1) default(vc17)
stream.mux.top.recur idle(0) start(1) repeat(0) span(100)

6-3

stream.mux.top.recur stream(vc17) start(2) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(4) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(6) repeat(1) span(100)
stream.mux.top.recur stream(vc42) start(8) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(10) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(12) repeat(1) span(100)
stream.mux.top.recur stream(vc41) start(14) repeat(0) span(100)
stream.mux.top.recur stream(vc18) start(15) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(17) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(19) repeat(1) span(100)
stream.mux.top.recur stream(vc41) start(21) repeat(1) span(100)
stream.mux.top.recur stream(vc23) start(23) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(25) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(27) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(29) repeat(1) span(100)
stream.mux.top.recur stream(vc42) start(31) repeat(1) span(100)
stream.mux.top.recur stream(vc41) start(33) repeat(0) span(100)
stream.mux.top.recur stream(vc30) start(34) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(36) repeat(1) span(100)
stream.mux.top.recur stream(vc23) start(38) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(40) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(42) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(44) repeat(1) span(100)
stream.mux.top.recur stream(vc41) start(46) repeat(1) span(100)
stream.mux.top.recur stream(vc23) start(48) repeat(0) span(100)
stream.mux.top.recur stream(vc42) start(49) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(51) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(53) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(55) repeat(1) span(100)
stream.mux.top.recur stream(vc23) start(57) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(59) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(61) repeat(1) span(100)
stream.mux.top.recur stream(vc11) start(63) repeat(0) span(100)
stream.mux.top.recur idle(0) start(64) repeat(1) span(100)
stream.mux.top.recur stream(vc11) start(65) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(66) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(68) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(70) repeat(1) span(100)
stream.mux.top.recur stream(vc42) start(72) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(74) repeat(3) span(100)
stream.mux.top.recur stream(vc17) start(78) repeat(1) span(100)
stream.mux.top.recur stream(vc18) start(80) repeat(1) span(100)
stream.mux.top.recur stream(vc42) start(82) repeat(1) span(100)
stream.mux.top.recur idle(0) start(84) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(85) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(87) repeat(1) span(100)
stream.mux.top.recur stream(vc41) start(89) repeat(0) span(100)
stream.mux.top.recur stream(vc18) start(90) repeat(2) span(100)
stream.mux.top.recur stream(vc30) start(93) repeat(1) span(100)
stream.mux.top.recur stream(vc17) start(95) repeat(1) span(100)
stream.mux.top.recur stream(vc30) start(97) repeat(0) span(100)
stream.mux.top.recur stream(vc2) start(98) repeat(2) span(100)

This stream makes CADUs for virtual channel 17. There are similar streams for the other virtual
channels below. We have set it up to do path service. The spacecraft id is 42. We are Reed-Solomon
encoding the frames with interleave 4 and codeword length 255. (If we had virtual fill, we would shorten
the codeword length.) Notice that we do not specify the CADU length because the length is implied by

6-4

the Reed-Solomon encoding. The length is interleave * codeword length + sync length, which is 1024 is
this example.

The second “vc17” line tells the stream how to fill its data region. If we had an insert zone or an
operational control field (OCF or CLCW), we would need similar lines for those regions. We are filling the
“vc17” data region using type C, which is the consumer loader type. It fills the region with

units from another stream. In this case, we fill with packets from the “pmux17” input stream, which is a
mux for three packet streams. The loader will load packets back-to-back, splitting them between CADUs
if necessary.

If the input stream runs out of packets, the consumer loader, by default, will put a constant fill pattern of
0xC9 into the data region to fill any remaining unused bytes. This is not the way we want to fill out any
CADU. Instead, we would prefer to insert idle packets. The field “lastUnit(I)” does just that. If the input
stream runs out of packets, the consumer loader will request idle packets. This will only happen in the
last CADU produced by this stream. The loader and the stream will terminate after providing this
lastCADU.

The “ERcomposition(1)” field is an optional field that causes the consumer loader to write unit
composition information to the expected results file. By default it is off because it can produce lots of
output. When on, the expected results file will show each CADU and the identity of all packets

in it. It will also show the first header pointer value and the number of
bytes per packet fragment when a CADU contains part of a split packet.

stream.cadu.vc17 service(P) vcid(17) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc17.region.data type© ERcomposition(1) inStream(pmux17) - lastUnit(I)

This mux stream interleaves the packets from three packet streams for input to “vc17.” Notice that this
mux uses a “range” specification. In this example, this means that the first ten packets (1-10) come from
“ap256.” In addition, packet 500 will also come from “ap256.” The other streams use a

recurrent pattern. The mux will get packets from “ap257” for packets 9-16, 19-26, 29-36, and so on. It will
get packets from “ap258” for packets 17-18, 27-28, 37-38, and so on. Notice that some unit ids, such as
#9, are in more than one list.

To resolve conflicts, a mux searches through the list in a specific order and uses the stream from the first
match that it finds. A mux always searches through range definitions before it searches through any
recurrent ones. To avoid confusion, we list ranges before recurs. Within ranges and recurs, a

mux searches them in the order that they are listed in the script. If it still has not found a match, it uses
the default, and if that fails (it does not exist or it ran out of units), the mux terminates. In the example,
this mux gets packets 9, 10, and 500 from “ap256” because they are range lists, and it uses ranges over
recurs.

stream.mux.pmux17 default(ap256) idle(ap256)
stream.mux.pmux17.range stream(ap256) uid0(1) uid1(10)
stream.mux.pmux17.range stream(ap256) uid0(500) uid1(500)
stream.mux.pmux17.recur stream(ap257) start(9) repeat(7) skip(2)
stream.mux.pmux17.recur stream(ap258) start(17) repeat(2) skip(8)

This stream makes packets for application id 256. Each packet is 332 bytes long, which includes the
primary header length. We have chosen to put a six byte secondary header in each packet, and we have
put a checksum at the end of each packet. The checksum is the sum of all bytes in the packet moduloe
256. Each packet has a data region and a secondary header region, so we must include lines to tell the
packet stream how to fill them.

6-5

We fill the data region with a constant pattern of 0x11. Type F is a constant pattern loader. For the
secondary header region, we are using the CCSDS unsegmented timecode. The timecode will increment
by the step as we progress from packet to packet.

stream.pkt.ap256 appid(256) length(332) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap256.region.data type(F) pattern(0x11)
stream.pkt.ap256.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This stream makes packets for application id 257.
stream.pkt.ap257 appid(257) length(340) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap257.region.data type(F) pattern(0x22)
stream.pkt.ap257.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This stream makes packets for application id 258. In this stream, we will
make the 30th packet a 40-byte idle packet.
stream.pkt.ap258 appid(258) length(128) 2hdr(1) 2hdrLength(6) checksum(1) - idleEvent(ap258idle)

stream.pkt.ap258.region.data type(F) pattern(0x33)

stream.pkt.ap258.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

event.value.ap258idle.range uid0(30) uid1(30) v(40)

This stream makes CADUs for virtual channel 18, and its layout is almost identical to that of “vc17.” In
this example, however, we will demonstrate how to introduce errors at the frame and packet levels.

There are two error specifications in this CADU stream. In the first, we plan to invert bit #2 (a bit in the
spacecraft id field) in the second CADU. In the second, we plan to invert five bits (bits 100-104) in
CADUs 5, 105, 205, 305, and 405.

The “convey” field defines how and when the error is applied. When convey is on, the error is conveyed
to every receiving stream in the pipeline. For example, if we put a conveyable error in a packet, then the
receiving frame stream and any other receiver will behave as if the error were introduced at that level.
The important point to note is that the stream applies the error after it has encoded the unit when convey
is on. If we put a bit error in a packet and piped it in a frame stream that was CRC encoding frames, then
the affected frame would have a CRC error because the stream applied the error after it encoded the
frame. If we then piped the frame into a NASCOM block stream, that NASCOM block would also have a
CRC error. In all cases, the streams apply the error AFTER encoding when convey is on.

When convey is off, the stream that applies the error hides it from all receiving streams. This means the
error is applied before encoding takes place. You might think of the error as an instrument error as
opposed to a transmission error. For example, if we put a non-conveyable error in a packet, then we will
not see CRC or RS errors in any frames containing that packet.

In summary, when convey is on, all receiving streams reflect the error, and the error is applied AFTER
encoding. When convey is off, only the original stream shows the error, and the error is applied BEFORE
encoding.

In this example, the spacecraft id error in the second CADU is non-conveyable, which means it is applied
before the Reed-Solomon encoding. The target processor should detect a spacecraft id error. The other
errors to bits 100-104 in the other five frames are conveyable, so the errors are applied after Reed-
Solomon encoding. This means that the target processor should see Reed-Solomon errors, and they are
correctable. The target processor should correct the errors in the five frames. The label field in both
errors is a information tag that the stream writes to the expected results file.

stream.cadu.vc18 service(P) vcid(18) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc18.region.data type© ERcomposition(1) inStream(pmux18) - lastUnit(I)
stream.cadu.vc18.error.flip convey(0) label(spidError) event(ev0) - startbit(2) bits(1)
event.unit.ev0.range uid0(2) uid1(2)

6-6

stream.cadu.vc18.error.flip convey(1) label(rsError) event(ev1) - startbit(100) bits(5)
event.unit.ev1.recur start(5) skip(100) occur(5)

stream.mux.pmux18 default(ap259) idle(ap256)
stream.mux.pmux18.recur stream(ap259) start(1) repeat(5) span(13)
stream.mux.pmux18.recur stream(ap260) start(7) repeat(5) span(13)
stream.mux.pmux18.recur stream(ap261) start(13) repeat(0) span(13)

stream.pkt.ap259 appid(259) length(784) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap259.region.data type(F) pattern(0x44)
stream.pkt.ap259.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This packet stream makes packets for application id 260. In this example, we throw away (drop) the
second packet, which should cause a gap in the target processor. The expected results file will also note
a gap. Notice that we share event “ev0,” which we defined above to introduce a CADU error. Events are
shareable.

stream.pkt.ap260 appid(260) length(392) 2hdr(1) 2hdrLength(6) checksum(1) - drop(ev0)

stream.pkt.ap260.region.data type(F) pattern(0x55)

stream.pkt.ap260.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This packet stream makes packets for application id 261. We plan to deposit the value 1 into the packet
data length field for packets 10-12. The error is non-conveyable, which means it is hidden from the
CADU. In general, you should not convey packet errors to a CADU stream that is Reed-Solomon
encoding frames because the target processor will probably remove them when the Reed-Solomon
decoder detects and fixes the errors. You then will get Reed-Solomon corrected frames instead of your
planned errors.

stream.pkt.ap261 appid(261) length(128) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap261.region.data type(F) pattern(0x66)
stream.pkt.ap261.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap261.error.set convey(0) label(length) event(ap261e) - startbit(32) bits(16) v(1)

event.unit.ap261e.range uid0(10) uid1(12)

stream.cadu.vc23 service(P) vcid(23) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc23.region.data type© ERcomposition(1) inStream(pmux23) - lastUnit(I)

stream.mux.pmux23 default(ap262) idle(ap256)
stream.mux.pmux23.recur stream(ap262) start(1) skip(1)
stream.mux.pmux23.recur stream(ap263) start(2) skip(1)

stream.pkt.ap262 appid(262) length(964) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap262.region.data type(F) pattern(0x77)
stream.pkt.ap262.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This packet stream creates packets for application id 263. We will limit it to creating only 100 packets.
The mux will use the default after this stream provides 100 packets.

stream.pkt.ap263 appid(263) length(944) 2hdr(1) 2hdrLength(6) checksum(1) - max(100)

stream.pkt.ap263.region.data type(F) pattern(0x88)

stream.pkt.ap263.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

6-7

stream.cadu.vc30 service(P) vcid(30) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc30.region.data type© ERcomposition(1) inStream(pmux30) - lastUnit(I)

stream.mux.pmux30 default(ap265) idle(ap256)
stream.mux.pmux30.recur stream(ap265) start(1) repeat(3) span(17)
stream.mux.pmux30.recur stream(ap266) start(5) repeat(3) span(17)
stream.mux.pmux30.recur stream(ap265) start(9) repeat(3) span(17)
stream.mux.pmux30.recur stream(ap266) start(13) repeat(1) span(17)
stream.mux.pmux30.recur stream(ap267) start(15) repeat(0) span(17)
stream.mux.pmux30.recur stream(ap266) start(16) repeat(1) span(17)

stream.pkt.ap265 appid(265) length(332) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap265.region.data type(F) pattern(0x99)
stream.pkt.ap265.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap266 appid(266) length(340) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap266.region.data type(F) pattern(0xaa)
stream.pkt.ap266.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap267 appid(267) length(128) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap267.region.data type(F) pattern(0xbb)
stream.pkt.ap267.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.cadu.vc41 service(P) vcid(41) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc41.region.data type© ERcomposition(1) inStream(pmux41) - lastUnit(I)

stream.mux.pmux41 default(ap320) idle(ap256)
stream.mux.pmux41.recur stream(ap320) start(1) repeat(0) skip(4)
stream.mux.pmux41.recur stream(ap321) start(2) repeat(0) skip(4)
stream.mux.pmux41.recur stream(ap322) start(3) repeat(0) skip(4)
stream.mux.pmux41.recur stream(ap323) start(4) repeat(0) skip(4)
stream.mux.pmux41.recur stream(ap324) start(5) repeat(0) skip(4)

stream.pkt.ap320 appid(320) length(780) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap320.region.data type(F) pattern(0xcc)
stream.pkt.ap320.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap321 appid(321) length(580) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap321.region.data type(F) pattern(0xdd)
stream.pkt.ap321.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap322 appid(322) length(560) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap322.region.data type(F) pattern(0xee)
stream.pkt.ap322.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap323 appid(323) length(572) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap323.region.data type(F) pattern(0xff)
stream.pkt.ap323.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap324 appid(324) length(571) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap324.region.data type(F) pattern(0xa5)
stream.pkt.ap324.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.cadu.vc42 service(P) vcid(42) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

6-8

stream.cadu.vc42.region.data type© ERcomposition(1) inStream(pmux42) - lastUnit(I)

stream.mux.pmux42 default(ap67) idle(ap256)
stream.mux.pmux42.recur stream(ap67) start(1) repeat(2) skip(4)
stream.mux.pmux42.recur stream(ap68) start(4) repeat(2) skip(4)
stream.mux.pmux42.recur stream(ap69) start(7) repeat(0) skip(6)

stream.pkt.ap67 appid(67) length(642) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap67.region.data type(F) pattern(0x67)
stream.pkt.ap67.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap68 appid(68) length(642) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap68.region.data type(F) pattern(0x68)
stream.pkt.ap68.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.pkt.ap69 appid(69) length(276) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap69.region.data type(F) pattern(0x69)
stream.pkt.ap69.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

stream.cadu.vc11 service(P) vcid(11) spid(42) frameSync(0x1acffc1d) - RSencode(1) RSinterleave(4)
RScodeLength(255)

stream.cadu.vc11.region.data type© ERcomposition(1) inStream(ap11) - lastUnit(I)

stream.pkt.ap11 appid(11) length(64) 2hdr(1) 2hdrLength(6) checksum(1)
stream.pkt.ap11.region.data type(F) pattern(0x88)
stream.pkt.ap11.region.2hdr type(tccuc) stepSeconds(0) coarseBytes(2) - fineBytes(3) stepFine(200)

This stream makes CADUs using a frame service (VCA/VCDU) for virtual channel 2. This time we have
selected to use a twelve byte insert zone in every CADU. We will fill the data region with a random
pattern. We will fill the insert zone with the user pattern 0x00faf30502ffd30403fc1303. However, we will
put an 8-bit sequence number in the first byte of the insert zone.

stream.cadu.vc2 service(V) vcid(2) spid(42) frameSync(0x1acffc1d) - insertZone(12) RSencode(1)
RSinterleave(4) RScodeLength(255)

stream.cadu.vc2.region.data type(A)
stream.cadu.vc2.region.insertZone type(U) wrap(0) format(H)
stream.cadu.vc2.region.insertZone.data s0(0x00) s1(0xfa) s2(0xf3) s3(0x05)
stream.cadu.vc2.region.insertZone.data s0(0x02) s1(0xff) s2(0xd3) s3(0x04)
stream.cadu.vc2.region.insertZone.data s0(0x03) s1(0xfc) s2(0x13) s3(0x03)
stream.cadu.vc2.task.sequence event(1) startbit(80) bits(8)

A-1

APPENDIX A
ERROR LISTING

Error # Description

1 unsupported byte boundary
2 undefined name
3 Invalid path.
4 not a fancy input unit file invalid fancy file version number
5 invalid unit/record length not 4-byte divisible spacesize is not a multiple of recordsize
6 unknown event
7 missing path
8 missing field
9 invalid choice invalid value
10 open file failure
11 out of range
12 invalid region type
13 inStream provided no units
14 inStream could not provide idle unit
15 duplicate name
16 undefined stream
17 Resource is locked. Already used.
18 Input unit is bigger than the target region.
19 This stream cannot make idle units.
20 An input unit does not perfectly fit a region.
21 Mux needs idle stream definition.
22 Mux has no input streams.
23 You cannot position (seek) a fancy unit file.
24 length() must be specified and non-zero when only CRC encoding
25 Device must be file type.
26 region cannot be defined as EMPTY.
27 Event is inactive. No ranges or recurrent patterns exist.
28 Need event() or value() field.
29 A generic frame must have a sync pattern.
30 Frame is too short.
31 Region does not fit inside unit.
32 Record stream has no regions.
33 Cannot position input file for variable size units.
34 Failed to write fancy file header.
35 Failed to write TDG file header.
36 Failed to write TDG file trailer.
37 Failed to write STGEN file trailer.
38 Sim file output failure.
39 Stream is in an infinite loop.

A-2

100 v2PktStream lsegment must be 256, 512, or 1024
101 v2PktStream Received too-big idle packet from v1 packet stream
102 v1PktGroup Group has only one packet
103 v1PktStream A packet length is too small.
104 v1tfStream lsegment must be 0, 256, 512, or 1024
105 tctfStream Input unit is too big.
106 v1PktStream Variable length packets specified but no lengths provided
107 v1tfStream The V1TF length is too small.
108 caduStream The CADU length is too short.
109 frames The sync pattern length must be 0 or 4.
110 MasterChannel Master channel got wrong size input frame.
111 tcSegStream A MAP value is >= 64.
112 v1PktStream A packet length is > 65,524.
113 tctfStream Invalid bypass/control flags detected. Must be 0, 2, or 4.
114 tcPhysical Both the idle and acquisition sequence lengths must be byte

divisible.
115 tcPhysical Acquisition sequence length is one bit! Not using value event?

Note: A message indicating “Tiger script error” is received instead of “SCTGEN script error” on the
SCTGEN GUI main menu panel if an error occurs during SCTGEN script processing.

